Foundations

Most of the sentences we will be interested in proving are not valid sentences
f'predicate logic, i.e., they are not true under every interpretation, but they
are true under certain specific interpretations. For example, a sentence such as
For every integer z, £ + 0 = z,” which might be written in predicate logic as
z)p(f(z,a), x), is not valid, but it is certainly true under an interpretation over
he integers that assigns

a to be 0

f to be the addition function
p to be the equality relation.

. Our problem is to describe the interpretations under which we intend these
tences to be true. For this purpose, we introduce the general notion of a
theory.”

6.1 DEFINITION OF A THEORY

- The interpretations we are concerned with are determined by a set of closed
entences, the axioms of the theory.

Jefinition (axioms)
~ The azioms of a theory are a set of closed sentences
-Ala A2y A3& ORI

We will say that the theory is defined by its axioms. 3

Note that we do not require that the given set of axioms be finite.



304 AXIOMATIC THEORIES: FOUNDATIG)

Example (family theory) Suppose we would like to define a theory of fj,
relationships. In the naive “family” interpretation Z we have in mind, the dOm&
is the set of people, and, intuitively speaking,

f(z) means the father of =
m(z) means the mother of z
p(z, y) means y is a parent of
gf(z, y) means y is a grandfather of z

gm(z, y) means y is a grandmother of z.

(More precisely, pz(d, e) holds if e is a parent of d, and so forth.) We chose t
names of the function symbols, f, m, and predicate symbols, p, gf, gm, to gi
them mnemonic associations. We may understand unconventional symbols, su
as m, gf, and gm, to be informal notations for ordinary symbols of predicate log
such as g, q, and r.

The axioms of the theory are the following set of closed sentences:

Fr: (Vz)p(z, f(z)) (father)

That is, everyone’s father is his or her parent.

Fo:  (Vz)p(z, m(z)) (mother)

That is, everyone’s mother is his or her parent.

F3: (Vz, y) [:{zeﬁ, (Q;fz&, f(y))] (grandfather)

That is, the father of one’s parent is his or her grandfather.

Fa: (Vz, y) [:{wﬁ (a;)’rg%x, m(y))] (grandmother)

That is, the mother of one’s parent is his or her grandmother.

We surround these sentences with a box to indicate that they are axioms

Let us consider the relationship between the axioms of a theory and -
specific interpretation we have in mind.

Definition (model, validity, implication, equivalence, consistency)
Let A; be the axioms of a theory T.
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An interpretation T is a model for T if each axiom A; of the theory is
true under 7.

A closed sentence F is valid in T if F is true under every model for T.

A sentence F implies a sentence G in T if, whenever F is true under a
model 7 for T, G is also true under Z.

Two sentences J and G are equivalent in T if F and G have the same
truth-value under every model for T.

The theory T is consistent if there is at least one model for T.

When we speak of a theory, we mean its axioms, its models, and its valid sentences.

As an immediate consequence of the definition, we have that every axiom
. for a theory is valid in the theory. Also, if a theory is inconsistent, it has no
__models, and therefore every sentence is “vacuously” valid in the theory. [In the
~ two-volume version of this book, we introduce a restricted vocabulary for each
theory. Here each theory employs the entire vocabulary of predicate logic.]

In defining a theory, we make sure that the interpretation we have in mind is
 a model for the theory. In general, however, there are many models for a theory.

Example (models). The “family” interpretation we had in mind is a model
for the family theory defined by the axioms Fi,F2,Fz, and F; in the example
above because each of the axioms is true under the family interpretation. This is
the intended model for the theory; however, there are many other models.

Consider the “number” interpretation Z over the domain of the nonnegative
integers under which, intuitively speaking,

f(z) is 2z
m(x) is 3z
p(z, y) is y=2r or y=3x
gf(x,y) is y=4z or y=6x

gm(z,y) is y=6x or y=9z.

~ (More precisely, fz(d) is 2d, and so forth.) Each of the above axioms F;, Fa, Fa,
~ and Fj is true under the interpretation Z. For instance, the intuitive meaning of
the mother axiom Fs,

(Yz)p(z, m(z)),
is
for every integer x,
dr =2 of 3% =31,
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and the intuitive meaning of the grandfather axiom Fs,

if p(z, y)
(Vz, y) [then of (=, f(y))],

is
for every integer x and y,
if y=2r or y= 3z,
then 2y =4z or 2y = 6z.

Therefore the “number” interpretation Z is a model for the family theory.

For a given closed sentence to be valid in a theory, it must be true under
every model for the theory. To establish validity in a theory, we may apply the
same techniques we used in predicate logic itself.

Example (validity).  Suppose we would like to establish the validity of the
sentence

F: (Vz)(3z)gm(z, 2),

that is, everyone has a grandmother, in the above “family” theory. Let us give
an informal argument based on the semantic rules and our common sense.

Let 7 be an arbitrary model for the family theory. Then each of the axioms
Fi1, Fa, F3, and Fy is true under 7.

Because the father axiom Ji, that is,

(Va)p(z, f(z)),
is true under Z, we know (by the V rule) that
for every domain element d,

p(z, f(z))

is true under the modified interpretation (z — d) o Z.

Therefore (by the application rule), we know that

for every domain element d,

(1) »(z, )
is true under (x « d) o {y «— fz(d))oT

where f7 is the function assigned to f by Z.

Because the grandmother axiom Fy, that is,

f Pz, v)
(Vz, y) [;heﬂ mgngj(:r, m(y)) ]

is true under Z, we know (by the V rule) that,
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- for all domain elements d and e, the subsentence

if p(z,y)
(4 theg gnf(a:, m(y))

is true under (z — d) o (y — €) o T.
Consider an arbitrary domain element d. Taking e to be the domain element
(d), we have that

the implication (1)
is true under the interpretation (z «— d) o (y « fz(d)) o T.

. Because the implication (}) and its antecedent (1), that is, p(z, y), are both true
- under {(z «— d) o (y « fr(d)) o Z, its consequent
gm(z, m(y))
is also true under (z « d) o (y — fr(d)) o Z.
~ Therefore (by the application rule), the sentence
- gm(:c, z)

fz

is true under (z «— d) o (z — mz(fz(d))) o Z.

:.Hence (by the 3 rule),
(32)gm(z, z)

is true under (x « d) o 7.

- Because d is an arbitrary domain element, we know (by the V rule) that the
sentence F, that is,
(Vz)(3z)gm(z, 2),

is true under 7.

Because Z was taken to be an arbitrary model for the family theory, this
- means that F is valid in the family theory. 3

When we wish to distinguish ordinary predicate logic from an axiomatic
theory, we shall refer to pure predicate logic. One may regard pure predicate
logic as an axiomatic theory in which the set of axioms is empty.

3 Up to now we have been very careful to avoid confusing a symbol in a sentence
and its value under an interpretation. For example, we never consider hybrid
objects such as f(a, d), in which f is a function symbol, a is a constant symbol, and
d is a domain element. Such a construct is neither an expression in predicate logic
nor an element in the domain of an interpretation. Our pedantry in this respect,
unfortunately, has made our proofs of validity more cumbersome than necessary.
Informal arguments may be made more concise and given more intuitive content if
~we agree to confuse symbols and their meanings under an intended interpretation.
~ The argument in the above example, for instance, can be abbreviated if we say
that = “is” a person and f(z) “is” z’s father, even though we are confusing
. symbols and their meanings in this way. We shall call such a style of proof an
“intuitive argument.” :
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J Example (intuitive argument).  Suppose we would like to give an 1ntu1t1ve<
| argument to establish again the validity of the sentence ,
| F: (Vz)(3z)gm(z, 2),
;"iw"f‘; that is, “Everyone has a grandmother,” in the family theory.
}“ Consider an arbitrary person x. By the father axiom, F;, we know that the
[aeah father f(z) of z is a parent of x; that is,

(1) »(z, f(2)
By the grandmother axiom, F4, we have (taking y to be f(x)), that

w 7 p(z, f(z))

then gm(a:, m(f(:v)))

Hence, by (1) and (}), we know that the mother m(f(z)) of the father f(z) of z
is a grandmother of x; that is,

gm(z, m(f(z))).
Therefore, we know by predicate logic that
(32)gm(z, 2).
Because this has been shown to be true for an arbitrary person z, we can conclude
(Vz)(32)gm(z, 2)
is a valid sentence of the family theory. Usually this step is omitted from intuitive
arguments. a

Because such intuitive arguments are shorter and easier to follow than ar-
guments with explicit interpretations, we shall use them from now on, except in
situations in which it is important to preserve the distinction between an expres-
i sion and its meaning. Whenever such an intuitive argument is given, a precise
i proof could be substituted.

“ Remark (basic predicate-logic properties). Note that in the intuitive
H argument we have made use of basic properties of predicate logic without men-
tioning them. For example, from the grandmother axiom F4,

il if p(z, y)
i o [ )
!

i we deduced (1), that is,

if p(z, f(z))

il then gm(z, m(f(z))).

il For this purpose, we implicitly appealed twice to the universal part of the quantifie
instantiation proposition, first taking x to be z itself and then taking y to be f(z).

Henceforth, we shall often appeal to such basic properties with no explicit

indication.
ol

In Problem 6.1, the reader is asked to give an intuitive argument in the
family theory.
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6.2 AUGMENTING THEORIES

The sentence F,
(Vz)(32)gm(z, 2),

which we have established in the preceding example, will be true under any model
- for the family theory. In particular, it will be true under the “number” interpre-
tation we gave earlier. The sentence F then has the intuitive meaning

for every integer x,
there exists an integer z such that
z =06z or z=9zx.

~ In showing that the sentence is valid in the theory, we are showing that it is true
under all the models of the theory at once.

Our family theory is “incomplete” in the sense that there are many properties
of family relationships that are not valid in the theory. For example, we cannot
show the validity of

G: (Vo)[not p(a, o)),
that is, no one is his or her own parent. Even though this sentence is true under
the “family” interpretation we have in mind, it is not true under all models of the

theory. In particular, it is not true under the “number” interpretation, for which
it has the intuitive meaning

for every integer z,
it is not so that
= 2¢ oxr =3

In fact, this sentence is false when z is taken to be 0.

If we want to develop a theory in which G is valid, we can add G to the
axioms, obtaining an augmented theory defined by the axioms
. -7:.11]:'21-?35]741 a'ndg~

The “family” interpretation would still be a model for this new theory, but the
“number” interpretation would not.

On the other hand, if we have the “number” interpretatioh in mind, we may
consider adding (not G), that is,

not (Vz)[not p(z, x)],

or, equivalently,
g (32)p(z, ),

as an axiom, obtaining an alternative theory defined by
.7:1, .7:2, f3, .7'-4, and g'.

The “family” interpretation would not be a model for this theory, since no one is
his or her own parent, but the “number” interpretation would be a model.
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Note that, in adding new axioms to a theory, we may reduce its collection of
models. In particular, if a new axiom is not true under one of the original models,
that interpretation will not be a model for the augmented theory. Therefore, if 5,

: H sentence is valid in the original theory, it is also valid in the augmented theory,
; but there may be some sentences that are not valid in the original theory but that
i are valid in the augmented theory.

! | In forming or augmenting a theory, we should be careful that the axioms are
i consistent, i.e., that there is at least one model for the theory.

: Example (inéonsistency). In our original formulation of the “family” theory
defined by the axioms
fl: -7:.21 -7:-3: and}-fh

we did not account for the possibility of “first” people such as Adam. We might
be tempted to add to our theory an axiom

A (Yy)[not p(a, y)),
fi that is, person a has no parents. However, the augmented theory defined by the
' axioms
.7:1, .7:2, .7'-3, .7:4, and A )
is inconsistent; i.e., there is no model for this theory.

i To see this, suppose 7 is a model for the augmented theory. Then the father
axiom Ji, that is,

(Vz)p(z, f(z)),

is true under Z. Therefore (taking x to be a)

p(a, f(a))
is true under Z. Thus (taking y to be f(a))

(Fy)p(a, y)
is also true under 7.

Note that this sentence is equivalent (by the duality between the quantifiers)
to the sentence

not (Vy)[not p(a, y)],
which is exactly the negation of the new axiom .4. Hence this axiom cannot be

true under Z, contradicting our original supposition that 7 is a model for the
augmented theory. 3

If a theory is inconsistent, it has no models, and therefore every closed sen-
tence is (vacuously)_valid in the theory. For this reason, inconsistent theories are
not very interesting. By demonstrating the existence of a model for a given set
of axioms, we can ensure that the theory it defines is consistent.

We introduce now two axiomatic theories that are of importance in their own
right.
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6.3 THEORY OF STRICT PARTIAL ORDERINGS

or a given binary predicate symbol p, the theory of the strict partial ordering p
the theory defined by the axioms

. if p(z, y) and p(y, 2) transitivit
S1: (Vz,y, z) then p(z. 2) (transitivity)
Sy (Vz)[not p(z, z)] (erreflexivity)

Under any model for the theory defined by S; and &Ss, we shall say that p
denotes a strict partial ordering.

In this theory, we shall use the conventional infix notation z < y rather than
p(z, y). We can thus rewrite S; and S; as

S1: (Vz, vy, 2) ;{1 il ‘i k=t (transitivity)
en T <z
S2:  (Vz)[not (z < )] (irreflexivity)

‘The reader should understand that here z < y is merely an informal notation
for p(z, y).

Let us consider two models for the theory of the strict partial ordering <.

" Examples (strict partial orderings)

e The less-than relation

Consider an interpretation Z over the integers that assigns the less-than re-
lation < to the binary predicate symbol <. Then 7 is a model for the theory
of the strict partial ordering <, because the transitwity and irreflecivity axioms

. for < both hold under Z. The intuitive meanings of these axioms under this
~ interpretation are

for every integer d,, ds, and ds,
if d, < dy and dy < d3
then dy < ds

and

for every integer d,
not d < d,

which are both true.
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e A finite relation

Consider an interpretation Z over the finite domain {A, B, C,D} that assigng
to < the binary relation illustrated by the following diagram: )

0 O
OO

In this representation, an arc leading directly from one element d to another
e indicates that the relation holds between these elements; that is, d <z € is true.
Thus we have

A<7B, B=<rC, and A <1C.
The absence of an arc indicates that the relation does not hold between the
corresponding elements. Thus

not B<7 D, not B=<zB, not B=<z A, and so forth.

The reader may confirm that the transitivity and irreflezivity axioms for <
do hold under T; therefore Z is a model for the theory of the strict partial order-
ing <.

Now let us consider two interpretations that are not models for the theory
of the strict partial ordering <.

Examples (not strict partial orderings).

e The inequality relation

Consider an interpretation Z over the integers that assigns the inequalit;
relation # to the binary predicate symbol <. Then 7 is not a model for th
theory of the strict partial ordering <. The irreflexivity axiom for < does hol
under 7; its intuitive meaning is

for every integer d,
not d # d,
which is true. On the other hand, the transitivity axiom for < does not hol
under Z; its intuitive meaning is
for every integer d;, dg, and ds,
if d]_ # d2 and d2 -',‘E d3
then d1 -'/: d3,
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hich is false if d; and dz are the same integer and dj is a different integer.
e A finite relation

Consider an interpretation Z over the domain {A, B, C} that assigns to < the
binary relation illustrated by the following diagram:

Then Z is not a model for the theory of the strict partial ordering <. The
transitivity axiom for < does not hold under Z, for we have

A<7B and B <7 C butnot A <7cC.
Also, the irreflexivity axiom for < does not hold, for we have

C |
<7 C 3

In Problem 6.2, the reader is asked to construct interpretations for the
theory of the strict partial ordering < over a finite domain under which one of
the axioms is true and the other is not.

 ASYMMETRY

Now let us establish the validity of a sentence in the theory.

Proposition (asymmetry of strict partial orderings)
' In the theory of the strict partial ordering <, the sentence

if T
S: (Vz,9) [tj;zen ngt iy =2 z)] (asymmetry)

is valid.

- This means that S is true under all models for the theory defined by &; and Ss.
~ In other words, for any interpretation under which S; and S, are true, S is also
true. We give an intuitive argument.

Proof.  Suppose that, contrary to the asymmetry sentence S, there exist el-
ements z and y such that both z < y and y < z. Then, by the transitivity

axiom &;, we have z < z. But this contradicts the irreflezivity axiom So. P

Remark (asymmetry implies irreflexivity). = We have established that, in
the theory defined by the transitivity axiom S; and the irreflezivity axiom S, the
asymmetry sentence S is valid.
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On the other hand, note that the asymmetry sentence S,

if <y
V2, y) [then not (y < :c)]

by itself implies the irreflezivity sentence S;. For, taking y to be x, we obtain

V) [z’f T < }

then not (r < x)

But (by propositional logic)
if <z :
then not (z < )

Therefore (by the substitutivity of equivalence)

if v <z
(Vz) [then not (x < x)]
is equivalent to
(Vz)[not (z < z)],

which is the irreflexivity sentence So.

is equivalent to not (z < x).

ol

Up to now we have been discussing a theory whose only axioms are the
transitivity axiom S; and the irreflezivity axiom Sz. Consider a theory in which
these properties are true for some binary predicate symbol ¢q. In other words,
whatever the axioms of the theory are, the sentences i

if q(z,y) and q(y, 2)
(Ve, y, 2) then q(z, 2) ]
and

(V) [nbt q(z, z)]
are valid. We shall say that, in such a theory, q denotes a strict partial ordering.
Of course, it is possible to have a theory with many binary predicate symbols,
each denoting a strict partial ordering.

INVERSE RELATION

In practice, people often use the sentence = > y synonymously with y < z. This
can be reflected in our theory by introducing a new axiom. More precisely, we
augment the theory of the strict partial ordering < by adding an axiom that
defines the relation =, the inverse of <, as follows:

S3: (Vz,y)fzr-y = y=< z] (inverse)

As before, = > y is merely an informal notation for an ordinary predicate symbol
such as q17(z, y). We shall refer to S5 as the definition of the inverse relation.
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Whenever we augment a theory by introducing a new axiom, we run the risk
aking our theory inconsistent. If so, the augmented theory will have no model,
d therefore any sentence will be valid. We can show that the augmented theory
s consistent by exhibiting a model for the enlarged axiom set. In this case, it is
clear that there do exist models for the augmented theory obtained by introducing
the new axiom S3 into the strict partial ordering theory.

6.4 THEORY OF EQUIVALENCE RELATIONS

For any binary predicate symbol p, the theory of the equivalence relation p is the
theory defined by the axioms:

Q1: (Vz,y, 2) [i{zei(i’(g) z()md Py, z)] (transitivity)
Qo: (Vz,y) [z{wz(i)’(j) :E)J (symmetry)
Qs: (Vr)p(z, z) (reflexivity)

Under any model for the theory defined by Qi, Q2, and Q3, we shall say that p
denotes an equivalence relation.

The convention for an equivalence relation is to write £ =~ y rather than
p(z, y). In other words, we shall use the symbol = informally, rather than the
predicate symbol p, to denote a relation for which Q,, Q2, and Q3 hold. We shall
thus write Q;, @, and Q3 as

Qi: Vr.y, 2) [:{l fz =Y gnd y= z] (transitivity)
en T~

Qy: (Vz,y) [:{wi '; 'Zi le (symmetry)

Q3: (Vr)[r=~2z] | (reflexivity)

Let us consider some models for the theory of the equivalence relation ~.

Examples (equivalence relations).
e The congruence-modulo-2 relation

Consider an interpretation Z over the integers that assigns to ~ the “congru-
ence modulo 2” relation =5, that is, for every integer d; and ds,
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dy =3 dy
if and only if

d; and dy are both even
or

dy and dy are both odd
Thus 2 ~5 6 but not 1 x4 2.
The reader may confirm that the transitivity, symmetry, and reflexivity ax-
ioms Q;, Qo, and Q3 are true under this interpretation.
e A finite relation

Consider an interpretation I over the domain {A, B, C, D, E, F, G} that assigns
~ to be the binary relation illustrated by the following diagram:

@: :
The reader may confirm that the transitivity, symmetry, and reflexivity ax-

ioms 97, 92, and Q3 each hold under the interpretation Z; therefore 7 is a model

for the theory of the equivalence relation =. 2

Now let us consider some finite interpretations that are not mddels for the
theory of the equivalence relation ~.
Examples (nonequivalence relations).

e A nontransitive relation

Over the domain {A,B,C}, consider the interpretation Z that assigns to =
the binary relation ~7 illustrated by the following diagram:

Then 7 is not a model for the theory of the equivalence relation ~, because
the transitivity axiom @, does not hold under Z. In particular, we have

A~rtB and B=7C but not A=zC.
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. The reader may confirm that the symmetry and reflexivity axioms do hold
under £z

o A nonsymmetric relation

Over the domain {A, B}, consider the interpretation Z that assigns to = the
 binary relation =7 illustrated by the following diagram:

Then 7 is not a model for the theory of the equivalence relation =, because
the symmetry axiom Qs does not hold under Z; we have

A =7 B but not ~T A.

The reader may confirm that the transitivity and reflexivity axioms do hold
~under 7.

o A nonreflexive relation

Over the domain {A}, consider the interpretation Z that assigns to =~ the
binary relation =7 illustrated by the following diagram:

®

In other words, =7 is the empty relation, which holds between no domain elements
at all. Then Z is not a model for the theory of the equivalence relation ~, because
the reflerivity axiom Q3 does not hold under ~7; we have

not A =7 A.

The reader may note that the transitivity and symmetry axioms Q, and Qs
do hold under Z, because their antecedents are always false under Z. 3
The above three examples illustrate that the axioms for the equivalence re-
lation ~ are independent; in other words, none of them is implied by the other
two. For in each example we presented an interpretation under which two of the
axioms are true and the third is false. If the two axioms implied the third, all
three axioms would be true.

In Problem 6.3, the reader is asked to find the bug in a fallacious proof
that one of the axioms for the theory of equivalence is implied by the other two.

DOUBLE TRANSITIVITY

From the axioms for the equivalence relation =, we can show the following result.
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Proposition (double transitivity)
The sentence
if uxv and
uzx and
VR Y
then z =~y

(Vu, v, z, y) (double transitivity)

is valid in the theory of the equivalence relation =. 3

We give an intuitive justification.

Proof.  Suppose that for arbitrary elements u, v, z, and Y,
urv, uxzr, and vRy

are all true; we attempt to show that then
Tr = y

is true.

Because u =~ v and v =~ y, we have, by the transitivity axiom Q;, that

U Ry

Because u ~ x, we have, by the symmetry axiom Q,, that
T U

Finally, because £ ~ u and u = y, we have, by the transitivity axiom Q; again,
that

=Y,

which is the desired conclusion. P

6.5 THEORY OF EQUALITY

The equality relation is an important tool that requires special treatment. We
want to define a theory of equality under whose intended models a binary predi:
cate symbol p is assigned the equality relation over the domain; i.e., the sentence
p(t1,t2) is true under a model Z if and only if the terms ¢; and ¢ have the same
value under 7.

The "usual convention is to write x = y rather than p(z, y) to denote th
equality relation in the theory of equality. The reader should understand tha
here = y is merely an informal notation for p(z, y), where p is a binary predicat
symbol. It is not to be confused with our use of the notation d; = ds, in giving the
intuitive meanings for sentences, to indicate that d; and dy are the same domai
elements.
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{E THEORY

Ithough our previous theories have been defined by finite sets of axioms, the

heory of equality requires a possibly infinite axiom set.
y Basic arioms

£1: (Va,y,2) [;’;j‘; =) A = ”"] (transitivity)
E: (Vz,y) [;}f:e::z =y y= :c] | (symmetry)
E: (Vz)[z =2 (reflezivity)

o Substitutivity aziom schemata

For every k-ary function symbol f and for each ¢ from 1 through k,

if =1
(V-’E, y) then f(Zh e a9 Zi—19%y 2541, ...,Zk):

2 Zi=1y ZitLs - Zk) Uiy s 5 B Ui s 55 5 5205

84(f) : (Vzl,..

(functional substitutivity for f)

For every f-ary predicate symbol ¢ (other than =) and for each j from 1
through ¢,

if z=y

Es(q) : (Vz, y) | then q(z_l_, wvw y Bl s Bjidn 1 59.50)
(Vzl,...,z_,-_l,zj+1,...,z¢) =

Q(Zla s %1 Yy Z5410 . s ,Zﬂ)

(predicate substitutivity for q)

Thus both the functional-substitutivity axiom schema £4(f) and the predicate-
substitutivity axiom schema €s(q) actually represent infinite sets of axioms, one
or more for each function symbol f and predicate symbol q. We exclude the
instances of the predicate-substitutivity axiom for =, in which ¢ is the equality
symbol =, because these instances follow from the other axioms.

Example. For a binary function symbol g, the corresponding instances of the
functional-substitutivity axiom schema £4(g) are

if =y
(V Ty Y, ZZ) [then g(:L‘, 22) == g(y’ 2"2)]
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and -
|

if z=y |
(sz Y, 21) [then g(zl,a:) = g(zhy)}

For a unary predicate symbol p, the corresponding instance of the predicate.
substitutivity axiom schema Es(p) is

o=
(Y, y) [;hei p(l.’J’L‘) = p(y)]_

Note that the axioms for the theory of equality include the transitivity, sym.
metry, and reflerivity axioms from the theory of equivalence relations; in other
words, = denotes an equivalence relation. This means that since the double-

transitivity property,

if u=v and

u=2x and
Vu,v,2,9) | _
then © =1y

1

was proved to be valid in the theory of the equivalence relation =, it is also valid
in the theory of equality.

The models for the theory of equality exhibit the following property.

Proposition (semantic rule for equality)
Suppose that Z is a model for the theory of equality and ¢, and ¢, are
terms.
If

the value of t; under 7
is the same as
the value of t; under 7,

then

t; = to is true under 7. 3

We shall refer to this result as the “= rule.”

Proof. Suppose that the terms ¢; and ¢ each have the same value, the domal
element d, under Z. We would like to show that the sentence ¢, = Iz is tru

under 7.

Let =7 be the binary relation assigned to the equality predicate symbol =
under Z. Then (by the proposition semantic rule, because the values of ¢, and ¢

under 7 are each d)
the value of t; = t3 under 7 is d =7 d.
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e would like to show that
d =71 d is true.
We have assumed that 7 is a model for the theory of equality. In particular,
the reflexivity axiom &3,
(Vz)[z = ],
_is true under 7. Hence (taking x to be t;), the sentence

t1 = t; is true under 7.

We know (according to the proposition semantic rule, because the value of #;
under 7 is d) that

the value of t; = ¢; under 7 is d =7 d.
Therefore

. d =1 d is true,

as we wanted to show.

We wanted to formulate a theory of equality under whose models the binary
predicate symbol = would be assigned the equality relation over the domain; i.e.,
under any model 7 for the theory, the sentence t; = 5 is true under Z if and only
if the terms ¢; and ¢ have the same value under Z. In fact, this is not the case
for the theory of equality we have formulated.

The above semantic rule establishes that the implication holds in one direc-
tion; i.e., if the terms ¢, and ¢ have the same value under Z, then the sentence

t; = to is true under Z.

The converse of the implication, however, is not true: There are some “ab-

normal” models Z for the theory of equality such that some terms ¢; and ¢, have

- distinct values under Z, but the sentence ¢; = t, is true under Z nevertheless.
This is illustrated by the following example.

Example (abnormal model for equality).  Consider an interpretation 7
over the domain {A, B} of two elements that assigns

a to be A
b to be B

and each predicate symbol (including the equality symbol =) to be the relation
that is true for all domain elements. (We do not care what functions are assigned
to function symbols under I.)

This is a model for the theory of equality; each of the axioms &; through &
~is true under Z. For instance, to show that the symmetry axiom &; is true under
I, it suffices to show that, for every domain element d and e, the subsentence

if =9

then y==x
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is true under the modified interpretation (z « d) o (y « e) o Z. But since the
equality symbol = is assigned the binary relation that is true for all domain
elements, including e and d, the consequent y = z of the implication, and hence -
the implication itself, is true under the modified interpretation. '

The truth under Z of the other axioms for equality may be established simi-
larly. Under Z, the terms a and b have distinct values A and B, respectively, but
the sentence a = b is true. 3

The above example illustrates that the converse of the semantic rule for
equality (the = rule) is not true. In other words, there are some models for the
theory of equality under which the equality predicate symbol = is not assigned
the normal equality relation over the domain. Such “abnormal” models cannot
be avoided in predicate logic, but they do not disturb us because the sentences
we shall want to prove concerning the equality relation will be true under the
abnormal models as well as the normal models.

In Problem 6.4, the reader is asked to show that a certain sentence is not
valid in the theory of equality.

SUBSTITUTIVITY OF EQUALITY

i
i The most important property of the theory of equality is given in the following
. proposition.

s Proposition (substitutivity of equality)

| ;; Suppose s, t, and r(s) are terms; then the universal closure of

i if s=1

it then r(s) = r(t) (term)
is valid in the theory of equality.

| Suppose s and t are terms and F (s) is a sentence; then the universal

closure of
if s=1
then F(s) = F(t) (sentence)

is valid in the theory of equality. 3

Wit Recall that, for any term r(s), the term r(t) denotes the result of safely
| replacing zero, one, or more free occurrences of s in r(s) with ¢. Similarly for
sentences F{s) and F(t).

Let us consider an example.
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Example.  According to the term part of the proposition, the sentence

ny)ﬁw=fw)
f then h(g(.’c, x)) = h(g(f(y), 5'3))

i valid in the theory of equality, because h(g(f(y), z)) is the result of safely
 replacing one of the free occurrences of z in h(g(z, z)) with f(y).

Also, according to the sentence part of the proposition, the sentence

if z=f(y) 1
(Vm, y) o (Bi)p(ma Y)
] eymuwxy)_

is valid in the theory of equality, because (3y')p(f(y), y’) is the result of safely
replacing the free occurrence of z in (3y)p(z, y) with f(y). Note that we have

renamed the bound variable y to ¥’. 3

The truth of the proposition is intuitively clear, but the general proof, which
- we omit, is rather technical.

REPLACEMENT

Using the substitutivity-of-equality proposition one can establish another impor-
tant property of the theory of equality.

Proposition (replacement)

Suppose z is a variable, ¢ is a term, and F[z] is a sentence, where = does
not occur free in t.

Then
- (Va)[if ==t then Flz]] is equivalent to FIt] (universal)
and

(3z)[z =1t and Flz]] is equivalent to Ft] (existential)

in the theory of equality. g

One can also establish a more general version of the proposition, in which n

variables z;, z3, ..., z, in a sentence F[z,,z, ..., Z,] are replaced by n terms
t15t21 i 1t'n.-

The replacement proposition would not hold if we used the partial substitu-
tion operation instead of the total substitution operation or if we abolished the
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restriction that z does not occur free in ¢; the reader is requested to show this jj
Problem 6.5.

The reader is also requested (in Problem 6.6) to show the validity of the
following properties of conditional terms in the theory of equality:

(if true then a else b) =a (true)

(if false then a else b) =b (false)

f(if p(z) then a else b)
Ya)y ] = (distributivity)

if p(z) then f(a) else f(b)

THEORY WITH EQUALITY

Often we wish to define theories whose models assign special meanings to certain
constant, function, and predicate symbols in addition to the equality predicate
symbol =. For this purpose we may provide special axioms for the theory, as well
as the equality axioms £; through £5. A theory that is defined by a set of axioms
that includes the equality axioms is called a theory with equality.

In general, when we describe a model 7 for a theory with equality, we will as-
sume (unless stated otherwise) that the equality symbol = is assigned the normal
equality relation, that is,

x = y is true under 7 if and only if z7 is identical to yz.

Under such a model all the equality axioms are satisfied.

In any theory with equality there is exactly one equality relation. This is
expressed precisely in the following result. (The proof is requested in Problem
6.7!)

Proposition (uniqueness of equality)

In any theory with equality, let 7(r, y) be an equality symbol, i.e., a
binary predicate symbol such that the equality axioms &£; through £
are valid for r. (In other words, r satisfies the transitivity, symmetry,
and reflexivity axioms and the functional and predicate-substitutivity
axiom schemata.)

Then r and the equality symbol = denote the same relation; i.e., the
sentence

Ve, y)[r(z, y) = (z=y)]
is valid in the theory.

(uniqueness)

el
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We have seen that there are abnormal models for the theory of equality,
der which an equality symbol is not assigned the normal equality relation over
e domain. The above proposition establishes that under any one model for the
theory of equality, all the equality symbols must be assigned the same relation,
even if that relation is not the normal one.

In the following sections, we give three examples of theories with equality:
the theories of weak partial orderings, groups, and pairs.

6.6 THEORY OF WEAK PARTIAL ORDERINGS

Our first example of a theory with equality is the theory of the weak partial

ordering =, where X is any binary predicate symbol, defined by the following
~ gpecial axioms: '

Wy: (Vax, y, 2) [:{zei :i_i znd y= z} (transitivity)
Wy: (Vz, y) [:{zez jmg_}__ ;md y = 'T] (antisymmetry)
Wy: (Vz)z < 1] (reflexivity)

As in any theory with equality, we also have the equality axioms &; through &s.
In particular, we have two instances £5(=<) of the predicate-substitutivity axiom
schema £5(g) in which ¢ is taken to be the binary predicate symbol < ,

if x=1y
(Y, 9, 2) [then r=z = yjz]

(left predicate substitutivity for <)
and

if T=Yy
(Vz,y, 2) [then 2=z = 2 < y]
(right predicate substitutivity for <)

In writing these axioms we have dropped the subscripts of 2; and z, that appeared
~in the general schemata.

The transitivity axiom W, the antisymmetry axiom Wy, and the reflexivity
axiom W; for the weak partial ordering < are independent; i.e., none of them
is implied by the other two. The reader is requested to show this (in Problem
6.8) by constructing, for each of these axioms, a model for the theory of equality
under which the axiom is false but the other two axioms are true.

The following result establishes that the equality relation of this theory can
be paraphrased in terms of the weak partial ordering <.
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Proposition (splitting)
The sentence
T

(Vz, y)

Y

M

(splitting)

r=<y and y=<=z

is valid in the theory of the weak partial ordering <.
We give an intuitive justification.

Proof. Consider arbitrary elements x and y; it suffices to show that
if =y
then z <y and y <=z
and
if =2y and yxz
then = =y.
The latter sentence follows from the antisymmetry axiom Ws.
To show the former sentence, suppose that
T=1Y;
we would like to show that
=<y and y 2.

We know (by the left predicate-substitutivity equality axiom for =<, taking 2
to be x) that

if e=1v

then %z = y=<«z
and (by the right predicate-substitutivity equality axiom for =<, taking z to be z)
that

if T=y

then x <z = = =Xy.
Therefore, because z = y and (by the reflerivity axiom Ws) x < =, we have (by
propositional logic)

T2y and y 2 T,

as we wanted to show. P

We may augment the theory of the weak partial ordering < by introducing
a new relation <, the irreflerive restriction of <, defined by the axiom

T <y
Wi : (an y) =
<y and not (z =1y)
(irreflexive restriction of <)
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oposition (irreflexive restriction)

The irreflexive restriction < of < is a strict partial ordering. P

The proof is requested in Problem 6.9.

As in the theory of strict partial orderiﬁgs, we may augment our theory of
_ the weak partial ordering < by introducing a new binary predicate symbol >,
- denoting the inverse relation of <. It is defined by the new special axiom:

Ws: (Vz,y)lzr-y = y=3z] (inverse)

Because the augmented theory is a theory with equality, we also have the
corresponding instances £s(>) of the predicate-substitutivity axiom schema for
equality,

clif 2=
(Va,y, 2) [then Tz = ytz]

(left predicate substitutivity for >)

if =y
V2,9, 2) [then 2T = zty}

(right predicate substitutivity for >)

We may establish a proposition that resembles the irreflezive restriction
proposition but that applies in the other direction. Consider a new theory with
equality defined by the special axioms for the theory of the strict partial order-
- ing <.

(Vz, y, 2) [;{zez -;i :nd y= z} (transitivity)
(Vz)[not (z < z)] (irreflexivity)

Because this is a theory with equality, we also have the equality axioms.

Let us augment this theory by introducing a new reflezive closure relation <,
defined by the axiom

T2y
Vz, y) = (reflezive closure of <)

T<yorr=y
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Proposition (reflexive closure)
The reflexive closure < of < is a weak partial ordering.

In other words, the transitivity, antisymmetry, and reflezivity axioms for < can b

shown to be valid sentences in the new augmented theory. The proof is requeste
in Problem 6.10. :

In Problem 6.11, the reader is asked to show the consistency and the indé
pendence of the axioms of a theory with equality. '

6.7 THEORY OF GROUPS

Our second example of a theory with equality is the theory of groups. In this;
theory we define "

e A binary function symbol z o y, denoting the group operation

e A constant symbol e, denoting the identity element

e A unary function symbol 7!, denoting the inverse function. :
Again the reader should understand that the symbols z o y, e, and z~! are c0n;

ventional notations for standard symbols of predicate logic, such as fi7(z, y)
and g101(x).

The theory of groups is defined by the following special axioms:

y a3,

Gi: (Vz)[zoe= :c] (reght identity)
Gy: (Vz)[woz™' =e¢] (right inverse)
Gy: (Vz,y, 2) [(a: oy)oz=zxo(yo z)] (associativity)

Because the theory of groups is a theory with equality, we also have th
transitivity, symmetry, and reflexivity axioms £, €3, and €3 for equality, as we
as those instances of the functional-substitutivity axiom schema £, that apply t
the function symbols z o y and z~! of the theory:

I .. _ ']
s, y,2) | T Z=V

Tty 5165 w6 B (left functional substitutivity for o)

-z'f T =
(V-’E, Y, Z) Lthen zox =20y

(right functional substitutivity for o)

Vz i @ -y . nctional substitutivity for inverse)
'Y lthen 2=1 = y~!
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cause T o y is a binary function symbol and ™! is a unary function, we have

wo instances of the functional-substitutivity axiom for z o y and one for z 1.

Let us consider some models for this theory.

xamples
The plus model

One model for the theory of groups is the plus interpretation T over the integers,
under which
s The group operation z o y is the plus function z7 + yz.
s The identity symbol e is the integer 0.
» The inverse function symbol z~! is the unary minus func-
tion —x7.

. The times model

Another model for the theory of groups is the times interpretation J over the
- positive real numbers, under which

® The group operation x o y is the times function z7 - y7.

® The identity symbol e is the number 1.

m The inverse function ™! is the reciprocal function 1/z .

The reader may confirm that each of these interpretations is a model for the
theory of groups. In other words, each of the above axioms is true under both
~ interpretations. For instance, the right-inverse ariom

(Vo) oo™t = e]
is true under the times interpretation because, for every positive real number r,
r-(1/r) =1.
Note that there is no model for the theory of groups over all the real numbers
under which x o y is the times function and e is 1. Whatever unary function

~ g(r) over the reals is assigned to the inverse function symbol z~! under such an
_ interpretation, it cannot be the case that

0-9(0)=1.

Therefore, the right-inverse axiom cannot be true under the interpretation. P

In the theory of groups, we can prove many properties from very few axioms.

Since the theory of groups is a theory with equality, we know that those
sentences in our language that are valid in the theory of equality are also valid
in the theory of groups. For instance, we have (by the substitutivity-of-equality
proposition) that, for all terms s and ¢ and any sentence F(s) in the theory of
groups, the universal closure of

if s=1t
then F(s) = F(t)
is valid in the theory of groups.
Let us show the validity of a sentence in the theory of groups.
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Proposition (right cancellation)
The sentence

if Toz=yoz _ . i
(Vz, y, 2) [th en T=1y J (right cancellation) .,;:

is valid in the theory of groups. 3

Proof. Suppose that, for arbitrary elements z, y, and z,
(1) =zoz=youz.
We would like to show that z = y.

By (1) and the left functional-substitutivity equality axiom £4(o) for the group
operation o,

(2) (zoz)ozl=(yoz)ozl.
By the associativity axiom G3 for o,

(3) (woz)oz l=gzo(z02™71)
and

(1) (yoz)ozl=yo(zoz7D).
By the substitutivity of equality applied to (2) and (3), we may replace (zoz)oz™!
with z o (z 0 271) in (2), to obtain

(5) wo(z0zl)=(yoz)os L.
Similarly, by the substitutivity of equality applied to (4) and (5), we may replace
(yoz) oz~ with yo(z0271)in (5), to obtain

(6) wo(z0z ) =yo(z0z7)).

By the right-inverse axiom Gy, we have
(1) 2oz l=g

By the substitutivity of equality applied to (6) and (7), replacing both occurrences
of (z0271) with e in (6), we obtain

(8) =zoe=gyoe.

By the right-identity axiom G, we have
(9) zoe==z

and
(10) yoe=uy.

By two applications of the substitutivity of equality applied to (8), (9), and (10),
replacing = o e with x in (8) and replacing y o e with y in the result, we obtain

(11)| 2=1y.

This is the desired conclusion. P
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Some other valid sentences of the theory of groups are ,
(Vz)leoz = z] (left identity)

(Vz)z~loxz =¢] (left inverse)

(Vz,y, 2) [;{zerzz oxm:yz ° y] | (left cancellation)
if gop=g ;

(V) [then e o ] (nonidempotence)

The proofs of the validity of these properties in the theory of groups are left as
~an exercise (Problem 6.12).

Once we have proved these properties for groups, we know that they are true
under all models for groups. For example, because the nonidempotence property
above is valid in the theory of groups and because the plus interpretation over
the integers is a model for the theory, we can conclude that

for every integer ,
if z4+2==x,
then z =0.

Similarly, because the times interpretation over the positive real numbers is
a model for the theory of groups, we can conclude that

for every positive real number z,
if #-2==2%
then = =1.

COMMUTATIVITY

Not every property of plus and times is valid in the theory of groups For example,
even though plus is commutative, that is,

T+y=y+zx
is true for all integers z and y, and times is also commutative, that is,
O T TR

is true for all positive real numbers, the group operation o is not necessarily
commutative, i.e., the corresponding sentence

(Vz,y)[zoy =youx]
is not valid in the theory of groups. To see this, it suffices to find a single model
for the theory under which the commutativity sentence is not true.
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Example (permutation model).  Consider the set II of all permutations On
the set of three elements S = {A,B,C}. These are the unary functions that map
distinct elements of S into distinct elements of S; there are precisely six of them:; |

e The identity mp, which leaves all elements fixed; that is,
mo(A) = A mo(B) =B Hale) 2

4 e The transpositions ma, s, and mc, which leave one element fixed but
interchange the other two; that is,

Ta(A)=A  wa(B)=cC  ma(C)=B

m(a)=c  mp(B)=B  wB(C)=A

‘ ﬂc(A) =B ﬂ'c(B) = A Wc(C) = C.
e The cycles w4 and 7—, which alter all the elements; that is,
m4+(A) =B m4+(B) =C T4(C) = A
n_(A)=cCc wm_(B)=A 7_(C)=B.
For all permutations 7 and #’, let the composition permutation w @ 7' be the

b1 permutation obtained by applying first = and then #’; in other words, for any
i element s of S,

(r @) (s) = ' (m(s)).
i The composition function maps any two permutations 7 and 7’ into their com-
1| position permutation 7 ® n’. For example,

i [ra ® ncl(A) = mc(ma(a)) = mc(a) = B
[TI'A®7F01(B) = ﬂc(ﬂ'A(B)) = wgl€] = C

A.

Il

\I [TTA®7TC](C) £= ﬂc(‘n’A(C)) = WC(B)

Note that, for each element s of S, [ra ® wc)(s) = m+(s); thus 7o ® 7c = 74

For any permutation 7, let the inverse permutation T be defined so that, fo
i any elements s and s’ of S,

l It

i m(s) = ¢' if and only if 7(s') = s.

il The inverse function maps any permutation 7 into its inverse permutation 7. Fo
example,

since T4 (A) = B, we have T, (B) = A;

N since 74 (B) = C, we have T, (C) = B;
|
since w4 (C) = A, we have T, (A) = C.
Note that, for each element s of S, 74 (s) = m_(s); thus 7, = 7_.

Now consider the permutation interpretation K, whose domain is the set .
of permutations of elements of S, under which
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e The function symbol z o y is the composition function zx ® yx.
e The constant e is the identity permutation 7.

e The function symbol z~! is the inverse function zx.

In Problem 6.13, the reader is requested to confirm that X is a model for
the theory of groups, i.e., that the right-identity axiom G, the right-inverse axiom
Go, and the associativity axiom Gz are true under K.

On the other hand, the commutativity property
(Vz,y)[zoy = yom]
is not true under K. For we have already observed that
TA ®@TC = Ty.
~ On the other hand,

[mc ® mal(A) = wa(mc(a)) = ma(B) = C

il

[rc ® Tal(B) = ma(nc(B)) = ma(A) = A

[rc ® mal(c) = ma(mc(c)) = ma(c) = B.

Thus, for each element s of S, [rc ® wa](s) = 7_(s); that is,

TCRmTA =T_.
 Because 4 # m_, we have
TA @ Te # e ® T4,

showing that the composition function on permutations of S is not commuta-

tive. r

Because we have found a model for the theory of groups under which the
commutativity property is not true, we have shown that the property is not valid
in the theory. If we wish to consider only those models under which the group
operation z o y is commutative, we can augment the theory of groups by adding
the new axiom

Gs: (Vz,y)[roy = yo z) (commutativity)

The new theory is called the theory of commutative (or abelian) groups. All
the valid sentences of the original theory of groups are also valid in this augmented
theory. For the theory of commutative groups, the plus and times interpretations
are still models but the permutation interpretation X is not.

In Problem 6.14, the reader is asked to prove the validity of a sentence in
the theory of monoids.
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6.8 THEORY OF PAIRS

Another example of a theory with equality is the theory of pairs. Intultlvely
speaking, in this theory we have certain basic elements, called atoms, from whicl
we construct pairs of form (z,, z2), where each component z, and z, is an ator
For example, if the atoms are A, B, and C, then :

(A, A), (A, B), (B.A), and (C, A)

are distinct pairs. The intended domain consists of both the atoms and the pairs‘
of atoms. 3

In the theory of pairs, we define
e A unary predicate symbol atom(z)
e A unary predicate symbol pair(z)
e A binary function symbol (x;, x3), denoting the pairing function.

The predicate symbol atom(x) is true if z is an atom and false if z is a pair;
pair(z) is true if z is a pair and false if z is an atom. The value of the pairing
function (z,, ) is the pair whose first element is the atom z; and whose second
element is the atom 5.

Again, do not be confused; we are not adding a new notation (z;, z2) to the
formal language of predicate logic; we are merely adopting informally the familiar
mathematical notation for a pair to represent a standard predicate-logic binary
function symbol, such as fio1(z1, x2).

The theory of pairs is defined by the following special axioms:

_pair(:c) ]

Py -(V ) - atom(x,) and atom(xsp) (pair)
(3 miswa) and
L & = {Byy Bg)

In other words, every pair is of form (z,, z2), where z; and z, are atoms.

Py: (V) [not (atom(z) and pair(z))] (disjoint)

In other words, no domain element is both an atom and a pair.

atom(x;) and atom(z2)
if and
P3: (Y x1, 22, Y1, Y2) atom(y1) and atom(yz)

then 7)f (mla 172) " (yla y2)
then z1 =y, and Ty = Y2

b

(uniqueness)

In other words, a pair can be constructed in only one way from two atoms.
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smark (pairs of nonatoms). Note that the axioms do not specify the
gsult of applying the pairing function (zq, z3) if £, or x4 is itself a pair rather
han an atom. Although expressions of this form are legal in the language and
hough they must have some values under any interpretation, the axioms do
not determine these values. Thus if £; and zo are not both atoms under a, given
del, the term (z;, ) might have the value A, (A, B), (B, C), or any other
domain element. We simply do not care what the value of the pairing function is
n this case. P

. Because the theory of pairs is a theory with equality, we also have the equal-
ity axioms &; through &5, including the appropriate instances of the functional-
- substitutivity axiom schema £y:

. if T, =1}
(¥ 21, 23, x2) [then (T1, z2) = (2, "’32)]

(left functional substitutivity for pairing)

i | T2 =z
(V T, T2, 1:2) I:then (3:1, $2) . (xli "'cfz):l

(right functional substitutivity for pairing)

We also have the instances of the predicate-substitutivity axiom schema Es
for equality that apply to the atom predicate symbol,

'f =
(V T, y) l:;he:: at?;m(x) = atom(y)]

(predicate substitutivity for atom)

.......

and to the pair predicate symbol,
if o=y . . .
(V z, y) then pair(z) = pair(y) (predicate substitutivity for pair)
because these symbols are in our vocabulary.

Example (pairs of integers).  Consider the interpretation Z over the set of
integers and pairs of integers under which

e The unary predicate symbol atom(x) is the relation that is true if z7 is
an integer and false if z7 is a pair.

® The unary predicate symbol pair(z) is the relation that is true if z7 is
a pair and false if z7 is an integer.

¢ The binary function symbol (x;, x2) is any function k such that k(d;, d2)
is the pair (d,, dy), for all integers d; and dy; we do not care what the
value of k(d1,ds) is if d; or dy is itself a pair.

The reader may confirm that Z is a model for the theory of pairs. 3
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THE FIRST AND SECOND FUNCTIONS

Let us now augment our theory of pairs by introducing two unary function sym.
bols first and second. Intuitively speaking, first(z) and second(x) are the firsy
and second elements, respectively, of the pair z. The axioms that define these
functions follow:

[if atom(z,) and atom(zs))
Lthen first((z1, T2)) = 71 (first)

P4 : (V Iy, :Bz)

[ if atom(z,) and atom(a:g)-

Ps: (VY xy, z2) then second ({z1, z2)) = T2

(second)

Note that the axioms do not specify the value of an expression of the form
first(z) or second(z) if z is an atom rather than a pair. We do not care what
value is assigned to such an expression under a model for the augmented theory.

Because the augmented theory is a theory with equality, we have the appro-
priate instances of the functional-substitutivity axiom schema &4 for equality,

[® . m — . . . .

(Vz,v9) _:J;aen ﬁfst(x) =ﬁ'rst(y)] unetional substiutivity for firs
(if =1y

V2, y) | then second(z) = second(y)]

(functional substitutivity for second)

We can easily establish the validity of the following sentences in the theory
of pairs: For the first function we have

[if pair(x)
| then atom (ﬁrst(m))]
For the second function we have

if pair(z) ]

then atom (second(z))

(V z) (sort of first)

(V z) (sort of second)

Often we refer to a unary predicate symbol, which characterizes a set ¢
domain elements, as a “sort.” The above properties are called the sort propertie
of the first and the second function, respectively, because they establish that i
a given element x is of the sort pair, then first(x) and second(x) are elements ¢
the sort atom.

THE DECOMPOSITION PROPERTY

In the augmented theory of pairs we can establish the following result.
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roposition (decomposition)
The sentence

if pair(z)
then = = (first(z), second(x))
is valid in the augmented theory of pairs.

Vx (decomposition)
. |
In other words, any pair is the result of pairing its first and second elements.

Proof.  For an arbitrary element z, suppose that
pair(zx).

We would like to show that

x = (first(z), second(z)).

We know (by the pair axiom P;) that

atom(z1) and atom(z,)
(3 z1, z3) and

z = (z1, x2)
Let z; and x5 be elements such that

atom(zy) and atom(z;)
and
z = (21, Tq).
Then (by the symmetry axiom for equality)
(z1, T2) = z.
We have (by the definitions of first and second)
if atom(xy) and atom(z,)
then first((z1, z2)) = =
and
if atom(z;) and atom(z;)
then second((a:‘l, 562)) &= Hy.
Therefore (by propositional logic, because atom(z;) and atom(z,))
first({z1, z2)) = 2, and second ({z1, ZY) = T3,
that is (by the substitutivity of equality, because (x;, z) = @)

first(z) = x, and second(x) = x5.
Therefore (by the symmetry axiom for equality)
zy = first(z) and T2 = second(x).

Finally (by two applications of the substitutivity of equality, because z =
(z1, x3)), we have
x = (first(z), second(z)),

as we wanted to show. r
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6.9 RELATIVIZED QUANTIFIERS

We now introduce a notational convention, that of relativized quantifiers, to ah.
breviate sentences in predicate logic. This convention has the effect of allowiﬁg'

quantifiers to range over particular subsets of the domain instead of over the entire
domain.

Definition (relativized quantifier)

For any unary predicate symbol p and sentence F,

(Vpzx)F stands for (V) [;{aep(?']
n

(3pz)F stands for (3 z)[p(z) and F] 3

Examples. In the theory of pairs, for a binary predicate symbol ¢, the sentenc
(V atom z1)[not g(x1,z1)]

stands for

v ) [z’f atom(x;) ]

then not q(z,,x;)

The sentence

(V pair z)(3 atom ) [first(z) = 1:1]

if pair(z)
(v z) [then (3 atom z1)[first(z) = -'El]],

stands for

which stands for

if pair(x)
atom(z,)
(¥ z) then (3 x) and :
first(z) = z;

We can apply the abbreviation to sequences of relativized quantifiers.

Definition (multiple relativized gquantifiers)

For any unary predicate symbols py, p2, ...,p, and sentence F,

(Vprz1) (Vpe x2) ... (Vppzp) F
stands for

if p1(x1) and pa(x2) and ... and pup(zy)

Y 21,20, ...,2%n
(¥ 21, 22 ) then F
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and
(3 4t 331) (3 D2 3;2) (3 Pn xn) F
stands for
pi(z1) and pa(z2) and ... and pn(z,)
(3 L1y T2y -y w'n) and
F

As a special case,

(Vpzi,z2,...,2,) F
stands for

(Vpz1) Vpza) ... (Vpaza) F,
which stands for

(V L1y Ty vun s ) if p(x1) and p(z2) and ... and p(z,)
then F
Similarly,
(Apzy1,29,...,2,)F
stands for

p(z1) and p(xz2) and ... and p(z,)
(3 I, T2, "-1:En) and

f

- Examples. In the theory of pairs, the sentence
(V atom $1,(L‘2)[ﬁ7‘3t(($1, xz)) == 1:1]
stands for

if atom(xy) and atom(zs)

V2022 | hen first((z1. 22)) =

The sentence

(2 pair z, y)[:r <y and y < :r]
stands for
pawr(x) and pair(y)
(& @5 1) and
T=y and yxX=x
The sentence

(Y pair z)(3 atom :L'l..’Ifg)[:I.' = (x;. rz)]
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stands for
if pair(zx)

(¥ z) then (3 atom z1,2) [z = (w1, 72)]

)

which stands for
[if pair(z)
atom(z;) and atom(xz,)
(V z) then (3 xq, z7) and
T = (T, Ta)

The relativized quantifier notation can make the sentences in our theory o

pairs somewhat clearer. For example, the definition P; of the pair relation, whic]
was originally written as

e

'pair(a:)

(V z) atom(zy) and atom(zy)
(3 21, z3) and
i z = (21, T2)

|
can now be abbreviated as

-paz'r(:c)
Vo) | =

_(3 atom T1,z2) [z = (z1, 2)]

The uniqueness axiom Pz for pairs, which was originally written as
atom(z;) and atom(zy) !

if and

(¥ 21, T2, Y1, Y2) atom(y1) and atom(yz)

then if (z1, x2) = (y1, y2)
then £, =y, and zo = Y2 |

1

can now be abbreviated as

if (z1, 22) = (y1, ¥2)

(V atom T1, T2y Y1, yZ) then T1 = Y1 and T2 = Y2 '

The definitions Py and Ps of the first and second functions can now b
abbreviated as

(Y atom z,, :vg)[ﬁrst((ml, .1:2)) = :L‘1]
and

(V atom z1, x)[second ((z1, T2)) = x2].

The decomposition proposition may be written as

(VY pair x) [.'L' = (first(z), second(z))]. r
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When we need to prove a sentence expressed in terms of relativized quanti-
. fiers, we can always abandon the abbreviation, rephrase the sentence in terms of
ordinary quantifiers, and use ordinary predicate logic arguments. Alternatively,
‘we can identify valid sentence schemata with relativized quantifiers and retain the
abbreviation. The relativized-quantifier schemata resemble some of the ordinary
valid sentence schemata.

In particular, for all unary predicate symbols p and ¢, we can establish the
~ validity of the universal closures of the following sentence schemata:

e Reversal of quantifiers

Vpx)(Vqy)F Fpz)3qy)F

Vg9V pz) F & g E s )

= . Duality of quantifiers
- - (V p z)[not F) (3 p z)[not F]

not (3p z) F not (Vp z)F.
, ‘ Let us justify the last of these equivalences.

Proposition (duality of relativized quantifiers)
For any unary predicate symbol p,

- (3 p z)[not F] = not (Vp x)F. g

;-j: ' Proof.  We have that
“ ] (3 p z)[not F]
~ is an abbreviation of
& (3 z) [p(z) and not F),
which is equivalent (by propositional logic) to
@t [17)]
which is equivalent (by the duality property of ordinary quantifiers) to

t (VY if 'p(.’B)]

otV =) [then Fl,

which may be abbreviated as
not (V p z)F.

This establishes the desired equivalence. P
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The reader is requested (in Problem 6.15) to prove two additional equiy;
lences concerning relativized quantifiers.

Remark (pitfall).  We must be careful not to apply properties of ordinar
quantifiers blindly to relativized quantifiers. For example, the sentence |

if (¥ z)q(x)
then (3 z)q(x)

is valid. However, for any unary predicate symbol p, the analogous sentence with
relativized quantifiers,

if (Vpx)g(x)
then (3 p r)q(z),

is not valid. This sentence stands for

i (V)i pla) then ()]
then (3 z)[p(z) and q(2)],

which is false under any interpretation under which (3 z) p(z) is false. Under such
an interpretation, the antecedent of this implication is true vacuously, but its con-
sequent is false. On the other hand, the sentence is true under any interpretation

under which (3 z) p(z) is true. P

In Problem 6.16, the reader is asked to define a theory of triples analogous
to the theory of pairs.

PROBLEMS

Problem 6.1 (family theory) page 308
In the family theory show that

if Alice is the parent of her own father,
then Alice’s father is his own grandfather.

(First express the sentence in predicate logic, then give an intuitive argu-
ment to show it is valid in the family theory. Let the constant a denote
Alice.)

Problem 6.2 (strict partial ordering) page 313
Construct an interpretation over the finite domain {A, B, C} under which

(a) The transitivity axiom S is true but the irreflexivity axiom S, is false.

(b) The irreflexivity axiom S, is true but the transitivity axiom & is false.
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oblem 6.3 (equivalence relation) page 317

Consider the following “proof” that, in the theory of the equivalence relation
'~ w, the transitivity axiom Q; and the symmetry axiom Q» imply the reflezivity
jom Q3.

We would like to show that, for an arbitrary element z, z ~ z. Let y be
_any element such that x ~ y. Then (by the symmetry axiom Q) we have y ~ z.
_ Therefore (by the transitivity axiom Q;, because T ~ yand y = z) we have z ~ z,
as we wanted to show.

: We have already shown, however, that the three axioms for the theory of
_equivalence are independent, i.e., that no two of them imply the third. Find the
fallacious step in the above argument.

*Problem 6.4 (nonvalid equality sentence) page 322

Show that the following sentence is not valid in the theory of equality:
(F2)(Vy)p(z, y)

or
not (z)(Vy) [z'f not (z = y) then p(z,y)]
or
if p(z, y) and p(y, y) and p(y, 2)
Ve, , 2) then p(z, 2) }

Hint: Construct an interpretation over a finite domain under which this sentence
is false. '

Problem 6.5 (replacement) page 324

Show that the replacement proposition would not hold if we had applied a
partial substitution rather than a total substitution. More precisely,

 (a)  Universal
- Find a term t and a sentence F(z) such that
(Vaz)[if =1 then F(z)]
i8 not equivalent to F(t).
(b) Egzistential
Find a term ¢ and a sentence F(z) such that
(Fz)z =t and F(z)]

is not equivalent to JF(t).

Show that the replacement proposition would not hold if  were allowed to occur
free in ¢. More precisely,
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(c) Universal

Find a term ¢ and a sentence F[z] such that z occurs free in t and the
sentence

(V) [if z =t then F[x]]
is not equivalent to F[t].
(d) Emistential

Find a term ¢ and a sentence F[z] such that = occurs free in ¢ and the
sentence

(3z)[z =t and Flz]]
is not equivalent to F[t].

Justify your answer in each case.

Problem 6.6 (conditional terms) page 324
Establish the validity of the following sentences in the theory of equality:
(a) True §

(if true then a else b) =a

(b) False
(if false then a else b) =b

(c¢) Distributivity

f(if p(x) then a else b)
Vz) | =

if p(z) then f(a) else f(b)]

Problem 6.7 (uniqueness of equality) page 324

Prove the unigqueness-of-equality proposition.

Problem 6.8 (weak partial ordering) page 325

Prove that the transitivity axiom Wi, the antisymmetry axiom W,, and t
reflexivity axiom Wj for the theory of a weak partial ordering < are independent;
L.e., for each of these axioms, there is a model for the theory of equality under
which the axiom is false but the other two axioms are true.
Problem 6.9 (irreflexive restriction) page 327

Prove the irreflexive restriction proposition.

Problem 6.10 (reflexive closure) page 328

Prove the reflexive closure proposition.



ROBLEMS 345

oblem 6.11 (consistency and independence) page 328

Consider the theory with equality defined by the following special axioms:

(V) [:c = f(f(f(:c)))] (three)
f ©#y

(Vz, y) [;hen B Fif] o 4= f(:::)] (connected)

(V ) [if p(z) then not p(f(z))] (skip)

(3 z)p(z) (one)

Show that the theory is consistent.

= (a)
g Hint: Construct a model with a domain of exactly three elements.

(b) Show that the axioms are independent.

Problem 6.12 (theory of groups) page 331
Prove informally the validity of the following properties in the theory of
groups:
(a) Left identity
(Vr)leoz = ]

P
¥

[Hint:  For an arbitrary element , show that (e o )ox~l=gzogzl]
(b) Left inverse

(Ve)lz~loz = ¢

[Hint: For an arbitrary element z, show that (z7loz)oz l=cog™l]

(c) Left cancellation

if zoz=zo0y
Ve, 9, 2) [then T=y ]

[Hint: For arbitrary elements x, y, and z such that z o ¢ = zoy,
show that (2710 z)oz = (27102)0 y.]

(d) Nonidempotence
(V) [z'f Tog = :n}

then z =e

Note: The order in which these sentences are presented is significant; the proof
of each may rely on the validity of the previous sentences.
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Problem 6.13 (permutation interpretation) page 333

Show that the permutation interpretation X is a model for the th
groups; i.e., show that

(a) The right-identity axiom G,

eory -

(b) The right-inverse axiom G,

(c) The associativity axiom Gy

are true under K.

Problem 6.14 (theory of monoids) page 333

Consider the theory of monoids, a theory with equality defined by the -fol.
lowing special axioms:

(Vz)zoe = g (Tight identity)
(Vx)le or = z (left identity)
(Vz,y, 2)[(xoy)oz = zo (y o 2)] (associativity)

(a) Determine whether the above axioms are independent. Justify your answer
(b) Prove informally the validity of the following sentence in the theory of monoi_'
(Y2, 3, 2) if zoy=eand yoz=e

then z = 2

Problem 6.15 (relativized quantifiers) page 342

For all unary predicate symbols p, establish the validity of the uruvers
closures of the following sentence schemata: 3

(a) Reversal (b) Distributivity
Bpz)(3 qy)F (\'/_1_7 z)[F and G]
@ g)@ p ) E (¥ p 2)F and (¥ p 2)G.

Problem 6.16 (theory of triples) page 342

Define a theory of triples, analogous to the theory of pairs, in which, inty i
itively speaking, (z1, z2, x3) is a triple of three atoms Z1, T2, and z3. Prowl
the basic axioms for this theory. Use the relativized-quantifier notation. :



