Deductive
Tableaux

We have introduced a deductive-tableau system to prove the validity of sen-
es in predicate logic. In this chapter, we adapt the system to prove validity
axiomatic theories.

7.1 FINITE THEORIES

-our discussion of axiomatic theories in the previous chapter, we showed how
 describe a particular theory by presenting a (possibly infinite) set of closed

A1, Az, A, ...,

which are the axioms of the theory. We defined an interpretation to be a model
of the theory if each axiom .4; of the theory is true under the interpretation.
closed sentence S of the theory is valid in the theory if S is true under every
model for the theory. Similarly, two sentences are equivalent in the theory if they
have the same truth-value under every model for the theory.

~ For instance, we defined the theory of strict partial orderings by the two
\xioms

Vz, y, 2) if <y and y <z

then z < z (transitivity)

(Vz)[not (z < z)] (irreflexivity)
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Here we take < to stand for any binary predicate symbol. This theory has m
models, including the less-than ordering < over the integers and the proper-sy
relation C over the sets. To determine that a closed sentence S is valid in ¢ b

strict partial-ordering theory, we must establish that S is true under all t
models.

A tableau is said to be wvalid in theory if its associate
in the theory, and two tableaux are said to be e
associated sentences are equivalent in the theory.

d sentence is vali
quivalent in a theory if t

Suppose we wish to prove that a closed sentence S is valid in a finite the
that is, one defined by a finite set of axioms. In the deductive-tableau framewor
we can do this by proving in predicate logic the initial tableau

assertions goals

Ay
As

where each assertion .4; is a sentence known to be valid in the theory, eitheé
because it is an axiom or because it has been previously proved valid in the

theory. A sentence that has been proved valid in a theory is called a theorem
the theory.

For example, to establish that a closed sentence S is valid in the theory
strict partial orderings, defined by the transitivity and irreflexivity axioms, wi
prove in predicate logic the initial tableau

assertions oals
if <y and y <z
then z < z (transitivity)
not (z < z) (irreflezivity)

LN
S A

Here, by outermost skolemization (Section 5.9), we have dropped the outermnst;
universal quantifiers from the two assertions. 7 ':‘

Once we have proved the validity of a sentence S in the theory of strict partial &
orderings, we may add S as an assertion in any future tableaux. :
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ample (theory of strict partial orderings). Suppose we would like
o show that the asymmetry property is valid in the theory of the strict partial
ering < ; that is,

if <y
(Vz, y) then not (y < x)

(asymmetry)

s valid. This was established informally in Section 6.3.

For this purpose it suffices to prove in predicate logic the tableau

assertions goals

if t<yand y<=z
then z < 2 ‘
(transitivity)

not (x <z) (irreflezivity)

v v =<y
GL (Y%, 9)7 | hor ot (y < z)

Note that we did not number the two axioms (as Al and A2). We shall usually
‘refer to such assertions (axioms or theorems) by name.

Applying the V-elimination rule twice in succession to goal G1, replacing
the bound variables z and y with the skolem constants a and b, respectively, we
obtain the goal

G2. if a<bd
then not (b < a)

By the if-split rule, this decomposes into

A3. a<b|~

G4. not |b<a |~

By the resolution rule, applied to assertion A3 and the transitivity axiom

if lz<y|T and y<z
then = < z

with {z — a, y « b}, we obtain
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A5, if [b=<2 |t
then a < z

By the resolution rule, applied to goal G4 and assertion A5, with {2 «
we obtain |

G6. |[not (a<a)|t

By the resolution rule, applied to the irreflexivity axiom

not (z < )

and goal G6, with {z « a}, we obtain the final goal

G7. true

Note that henceforth we do not indicate which of the dual forms (AA, AG
and so on) of the resolution or equivalence rule is being applied; this should b l
evident.

Because we have proved the validity of the asymmetry property, we may
it as an assertion in future proofs within the theory of strict partial orderings.

Example (family theory). In Section 6.1, we defined a theory of farml /
relationships. In the “family” interpretation 7 we have in mind, the domain i ;:
the set of people, and, intuitively, for the function symbols f and m, :

f(x) is the father of
m(z) is the mother of z,

and, for the predicate symbols p, gf, and gm,
p(x, y) means y is a parent of =
gf (z, y) means y is a grandfather of x {
gm(z, y) means y is a grandmother of z.

We define the theory by the following set of axioms:
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(V2)p(z, f(z)) (father)
Va:)p(a:, m(z)) (mother)

, y)[if p(z,y) then of (z, f(v))] (grandfather)
(v, y)[if p(z, ) then gm(z, m(y))] (gromdmotlier)

_ That 1s, everyone’s father or mother is his or her parent, and the father [mother]
'f'.of one'’s parent is his or her grandfather [grandmother].

In this family theory we gave an informal argument to show the validity of
 the sentence

(Vz)(3z)gm(z, 2),

that is, everyone has a grandmother. We can now prove it as a theorem in the
theory using the deductive-tableau system.

We begin with the tableau

assertions goals
p(z, f(z)) (father)
p(z, m(z)) (mother)
if p(z, y)

then gf (:r;, ¥ (y)) (grandfather)

if pz, y) _
then gm(z, m(y)) (grandmother)

Gl. (Vz)¥(3 z)3gm(z, z)

By the V-elimination and 3-elimination rules, we may drop the quantifiers
of goal G1, to obtain

G2. | gm(a, 2)

The bound variable z, whose quantifier is of universal force i in goal G1, is replaced
by the skolem constant a in forming goal G2.

Applying the resolution rule to the grandmother axiom
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if plz, y)
then | gm(z, m(y))

and goal G2, with {z «— a, 2z « m(y)}, we derive the goal

G3. | p(a, y)

By the resolution rule, applied to the father axiom

p(z, f(z))

and goal G3, with {z « a, y « f(a)}, we obtain the final goal

G4. true

The reader may observe that the deductive-tableau proof reflects the info
reasoning given in Section 6.1. In Problem 7.1, the reader is requeste
carry out another deductive-tableau proof in the family theory. In Proble
7.2, a proof in an augmented family theory is requested. In Problem
a deductive-tableau proof in a different axiomatic theory is requested.

If a theory is defined by an infinite set of axioms, we do not include
the axioms as assertions, because each tableau can have only a finite number
assertions. In the case of a theory with equality, we extend the system instead
introducing a new deduction rule that takes the place of infinitely many axiom

7.2 EQUALITY RULE

If we want to prove the validity of a sentence S in a theory with equality, the
most straightforward approach would be to add the equality axioms as assertm
of our initial tableau. We have three simple axioms and two axiom schematd
The three axioms are
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Vz v, 2) [:]’: i 0 z] (transitivity)
en =12

o) [hest ] (symmetry)

(V z)[z = z] (reflexivity)

The two axiom schemata are

| For every k-ary function symbol f and for each i from 1 through k,

if =1y
(V2 5 1lm (Va:,zyg then f(z1, ...,2i—-1,%,2i41, ..., 25) =
lyer oy ®i~1s 4441992k f(zla 21, Y, Zig1s ---,Zk)

(functional substitutivity for f)

For every f-ary predicate symbol ¢ (other than =) and for each J from 1
through ¢,

f z=y
(V:r, y) then q(zl, s 3 %=1, T, Z541,y - ,Zg)
(Vzl,...,zj_l,zj+1,...,zg) =
@(21y <oy 251, Yy 241 -« 5 Z2)

(predicate substitutivity for q)

The functional-substitutivity axiom schema actually represents an infinite set
of axioms: one for every k-ary function symbol f and for each i from 1 through k.
Similarly, the predicate-substitutivity axiom schema represents an infinite set of

axioms: one for every f-ary predicate symbol g (other than =) and for each j
from 1 through ¢£. :

This approach fails because we can only have finitely many assertions in
a tableau. A more practical approach is to drop the symmetry, transitivity,
functional-substitutivity, and predicate-substitutivity assertions altogether (leav-
ing only the reflezivity assertion) and introduce instead an equality rule, which

resembles the equivalence rule for predicate logic and enables us to treat equality
in an efficient way.

THE BASIC FORM

The basic form of the equality rule is expressed as follows.
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Rule (A A-equality, left-to-right)

i assertions goals

A1[3=t]

A7)

A48 False |
or

A0(78 )

where
= s =t stands for the free, quantifier-free equalities s; = ty, ...,
sk = tx (k > 1), which occur in A;.
» s’ stands for the free, quantifier-free subterms s, . .. By {6 =
1), which occur in A,.

® The free variables of A;[s =] and .43(s’) are renamed so that
the rows have no free variables in common.

m {0 stands for t16,...,1.0.
® f is a most-general separate-unifier for the tuple of subterms
(3, ¢’) and the tuple of subterms (%); that is, 510, ..., 8.0
and s10, ..., sy0 are all identical terms and ¢,6, ..., 0 are

all identical terms. The terms s,0, ..., sx6, 510, ..., sy must
be distinct from the terms ¢,0, ..., #.6.

= false stands for false, ..., false (k times). 3
|

il = 4
| More precisely, to apply the AA-equality rule to two assertions A and A; of
m a tableau: 1
1

| e Rename the free variables of .A; and Aj if necessary to ensure that they
have no free variables in common.

o Select free, quantifier-free subsentences of A,

s=t: sy =1y, ..., s =1t (k>1),
! and free, quantifier-free subterms of A,,
sios, L, s (£>1),
1 such that € is a most-general separate-unifier of the tuples (s;. ..., s.
| 81, -+, 8p) and (t1, ..., tx); that is, :
i .

: " 50, ..., sx0 and s, ..., sp0 are all the same term. which
| we shall call s6.
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s 10, ..., tx0 are all the same term, which we shall call t. We
require that sf and ¢6 be distinct. (Note that we invoke the
separate-tuple-unification algorithm of Section 4.8.)

Apply 0 safely to the assertion .4; and replace all free occurrences of
s0 = t6 in A,0 with false, obtaining the disjunct

A0 [False .

Apply 6 safely to the assertion A and replace safely one or more occur-
rences of s6 in A260 with ¢0, obtaining the disjunct

A6(70).
Simplify the disjunction
A10| false] or A,0(16).

e Add the simplified disjunction to the tableau as a new assertion.

- Remark (at least one replacement).  Although the substitution notation
admits the possibility that no equality s =t actually occurs in A;, the wording
~ of the rule requires that some equalities actually do occur. Similarly, we require

. that at least one subterm of 4,0 actually be replaced, even though the notation
does not imply this. Otherwise, there would be no point in applying the rule. For
~ the same reason, we do not apply the rule if sf and tf are identical. 3

The equality rule allows us to drop the symmetry, transitivity, functional-
substitutivity, and predicate-substitutivity axioms from our tableau; we must still
retain the simple reflezivity axiom as an initial assertion

r =2

We also have the following right-to-left version of the equality rule.

Rule (A A-equality, right-to-left)

assertions goals

A [s=1]

Aa (1)

A,6|False |
or

Ay0(50)

where A; and Aj satisfy the restrictions analogous to those in the left-

to-right version of the rule. r
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This rule allows us to replace occurrences of 16 in A20 with s, rather ty,
the other way around. &

POLARITY

The polarity strategy for the A A-equivalence rule should also be applied to both
versions of the equality rule.

Strategy (polarity)

An application of the AA-equality rule is in accordance with the polarity
strategy if

at least one of the occurrences of
M=y sewy  Spes il

m A;, whose instances are replaced by false in applying the
rule, is of negative polarity in the tableau.

In the polarity strategy, the negative polarity need not be strict; the oc.
currence in question may actually have both polarities. Note that the polarity
strategy places no restriction on the subterms g}, . .. , 8y of Ay.

Example.  Suppose our tableau contains the assertions

assertions goals

then [ f(z,a) | = g(x, y)}

Aj q( f(b 2) |, v, 2)

Let us apply the AA-equality rule, left-to-right, to A, and A4,. The subterms to
be matched are indicated by boxes.

Note that .4; and A, have the free variable y in common. We therefore
rename y as y in Aj,, to obtain the assertion

—_

A q( £, 2) |, 7, z)

Consider the free subsentence

s=t: f(z,a)=g(z,y)
in A; and the free subterm

s": f(b, 2)
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in .;l; The terms

az | flw; @) and s’ f(b, 2)
are unifiable under the most-general unifier

0: {z —b, 2~ a};

the unified terms s and s'6 are identical to f(b,a).

Applying 6 to A,, we obtain

A0 :  if r(b) then f(b, a) = g(b, y),
where the unified equality is
(s=8)0: (b, a)=g(b, y).

Replacing the equality f(b,a) = g(b,y) with the truth symbol false in 4;0, we
~ obtain

AY :  if r(b) then false.

Applying 6 to .Z;, we obtain

A0 q(f(b,a), , a).
Replacing the subterm s6 : f(b,a) with t0 : g(b,y) in A6, we obtain
A3+ alg(by), 7, a).

Forming the disjunction (AT or A}), we obtain
if r(b) then false
or
a(9(b,y), ¥ a).
This reduces (under true-false simplification) to the new assertion

not r(b)
or

2(g9(b,y), 7, a)

which is added to the tableau.

As usual, we do not add the intermediate sentences .:l‘;, A0, .Z;G, A¥, Az,
or the unsimplified disjunction to the tableau.

This application of the rule is in accordance with the polarity strategy because
the occurrence of the equality

f(z, a) = g(, y)

in A4, is negative in the tableau. r
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JUSTIFICATION

To justify the A A-equality rule, we show that the old (given) tableau is equivalent
to the new tableau. The justification of the A A-equality rule is analogous to that
of the A A-equivalence rule. We justify the left-to-right version of the rule. Becauge
the rule preserves equivalence, we can use the specral justification Propositioy
(Section 5.2), rather than the general justification proposition, in the proof.

Justification (A A-equality). Suppose that A, and A, are two assertions that
satisfy the restrictions for applying the AA-equality rule. As in the justificationg
for the AA-resolution and AA-equivalence rules, we may assume that the free
variables of A; have been renamed as necessary to ensure that the assertiong
have no free variables in common.

Let 7 be an interpretation under which the required tableau 7, is false; that
is, the universal closures of the required assertions A1 and Ay are both trye
under 7. By the special justification proposition, it suffices to establish that the
generated tableau 7, is false under Z, that is, that the universal closure of the
generated assertion, the disjunction

A6 False |
or
A,60(78).

15 also true under 7.

Because the universal closures of 4; and A, are true under 7. the univer-
sal closures of A0 and A0 are also true under Z, by the universal closure-
instantiation proposition. Therefore, by the semantic-rule-for-universal-closure
proposition, 4,6 and A6 are themselves true under any interpretation that agrees

with 7 on the constant, function, and predicate symbols of 4,0 and A56. Let T’
be any such interpretation.

The proof now distinguishes between two cases.

Case: (s = t)f is false under 7’
That is, the equivalence (s = t)0 = false is true under 7’. Then (by the
substitutivity of equivalence), because 4,6 is true under 7,
Alé?[false]

1s also true under Z’. It follows (by the semantic rule for the or connective) that
the disjunction

A6 false ]
or
A20(t0)

is also true under 7”.
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Case: (s = t)6 is true under 7’

That is, s# = t0 is true under Z'. Hence, by the substitutivity-of-equality
_ proposition (Section 6.5), because A50 is true under 7',

A26(78)
is also true under Z'. It follows (by the semantic rule for the or connective) that
the disjunction
A6 False |
or
A20(70 )
is true under 7.

In each case, we have concluded that the generated assertion, the disjunction
A10| false |
or
A26(10),
is true under Z’, for any interpretation Z' that agrees with Z on the constant,
7 function, and predicate symbols of 4,0 and A,0, and hence of the new assertion.
Therefore (by the semantic-rule-for-universal-closure proposition), the universal
;—: closure of the generated assertion is true under Z, as we wanted to prove. The

final simplification step preserves equivalence. -

The justification of the right-to-left version of the rule can be shown by the
S symmetry of equality.

DUAL FORMS

We have given the AA-form of the rule, which applies to two assertions. By
duality, we can introduce forms of the rule that apply to an assertion and a goal,
or to two goals. We present only the AG-form (left-to-right version), which applies

4 ~ to an assertion and a goal. This is the most commonly used form.
.~ Rule (AG-equality, left-to-right)
ﬂ | assertions goals
Als=1)
G(s')

not (A8 false )

and

Go(i0)
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where A and G satisfy the same conditions as A; and A,, respectively,
in the AA-equality rule.

There are analogous right-to-left forms. The justification of the dual formg
of the equality rule follows by duality.

The polarity strategy for each dual form of the rule is analogous to that for
the AA-equality rule: at least one of the free occurrences of s; = t;, ..., s = t,

which are replaced by false in applying the rule, should be negative in the tableay,

Example. Suppose our tableau contains the assertion and goal

assertions goals

A: f@ ) = (s a]]

(Vy) Q( g(b, 2) |, v, z)
2 and

(o)

Let us apply the AG-equality rule, right-to-left, to assertion A and goal G.
The subterms to be matched are indicated with boxes. Note that A and G have
no free variables in common.

Consider the free subsentence
s=t: f(z,y) = g(z, a)
in A, which has negative polarity in the tableau, and consider the free subterms
te gl 2) and t": g(u,a)
in G.
The terms
t: g(z,a), t': g(b z), and t": g(u,a)
are unifiable, with a most-general unifier
6: {x b, z2—a, ub};
the unified term is g(b, a).
We apply 6 to the assertion A and the goal G, obtaining
Af: f(by) = g(b, a)
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Yy)a(g(b, a), y, a)
Ggeo . and
_ p(9(b, a)),
spectively. Replacing the equality
(s=1)0: f(b y)=g(b, a)

in A@ with false, and (safely) replacing the two subterms
t6: g(b, a)
in GO with

s0: f(b, y),
we obtain the new goal

not false
and

V) a(f(b ), ¥, a).

and

p(f(b,y)).

‘Note that we have used the rule to replace two occurrences of t0 with s6. Also,

we have renamed the variable y of the quantifier (Vy) as 3’ to avoid capturing
the free occurrence of y in f(b, y).

The new goal reduces (by true-false simplification) to

Vo) e (f(b, y), ¥, a)

and

p(f(b’ y))

e

Remark (skolemization in axiomatic theories). The skolemization pro-
cess has been described and justified for pure predicate logic. We have been
applying the process, however, to remove quantifiers in axiomatic theories. Re-
moving a quantifier of both forces or a quantifier of strict existential force presents
no problem because these phases of the process preserve equivalence; if two sen-

tences are equivalent in predicate logic, they are equivalent in any axiomatic
theory.

The trouble arises when we attempt to remove quantifiers of strict univer-
sal force, because this phase does not preserve equivalence, but only validity;
a process that preserves validity in predicate logic may not preserve validity in an
axiomatic theory. In predicate logic, to be valid a sentence must be true under
all interpretations; in a theory, to be valid a sentence must be true only under
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the models of the theory. Therefore the removal of quantifiers of universal force
requires special justification for each theory we consider. We shall not do this
here, but only indicate why it must be done.

For a finite theory, the justification of this phase of the skolemization pro-
cess 1s straightforward. We choose as our skolem function (or skolem constant)
a symbol that does not occur in any of the axioms.

This approach does not suffice if our theory is infinite and defined by one
or more axiom schemata. In this case, it may happen that every constant and
function symbol occurs in some instance of an axiom schema.

For example, in the theory of equality, suppose we remove a quantifier of
strict universal force by introducing a new unary skolem function symbol . Ia

that case, we automatically provide the appropriate instance of the functiong]
substitutivity axiom schema,

(Vz,y) ?}:ez :f&) ~ f(y) (functional substitutivity for f)

In an infinite theory, the danger we face is that, in removing a quantifier
of strict universal force from a sentence that is not valid, we introduce a skolem
function symbol f and obtain a sentence that is valid in the theory, because it
is a consequence of some instances of our axiom schemata that refer to f. This
turns out to be impossible in the theory of equality or any of the other theories
we shall consider. Therefore we shall use the skolemization process freely in these

theories.
eories. |

In Problem 7.4, the reader is requested to show that the transitivity, sym-
metry, and substitutivity properties of equality can actually be proved in a tableau
with the equality rule. In Problem 7.5, the reader is asked to prove the validity
of one sentence in the theory of equality and to show the nonvalidity of another
sentence.

7.3 FINITE THEORIES WITH EQUALITY

A tableau that includes among its initial assertions the reflezivity axiom and to
which we may apply the equality rule, as well as any of the predicate-logic rules,
will be called a tableau with equality.

We have seen that we can prove a sentence & within a particular finite theory
by adding the axioms for the theory as the initial assertions in a predicate-logic
tableau, and adding S as the initial goal. In the same way, if we want to prove
a sentence S in a finite theory with equality (that is, one defined by the equality
axioms plus a finite set of special axioms), we may add the special axioms as the
initial assertions of a tableau with equality that has & as its initial goal.
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In the following sections, we apply the deductive-tableau framework to prove
validity of sentences in two finite theories with equality. We start with the
eory of weak partial orderings.

THEORY OF WEAK PARTIAL ORDERINGS

We have defined earlier (Section 6.6) the theory of a weak partial ordering < as
the theory with equality whose special axioms are

f oz < <
(Vz,y, 2) [:J;l b i and y = z} (transitivity)
en T =<z
f T < <
(Vz, y) [zf z3y and y = x] (antisymmetry)
then z=y
(Vz)[z < 2] (reflexivity)

To prove the validity of a sentence & in the theory of the weak partial or-
~ dering < within the tableau framework, we need only prove the following tableau
with equality:

iy

T

assertions goals

A if =Xy and y=<z
| Hn then < 2 (transitivity)

if <y and y<=z
then x =y (antisymmetry)

z<x (reflezivity)

S

T

Here again, by outermost skolemization, we have dropped the outermost universal
quantifiers from the initial assertions.

Recall that, because this is a tableau with equality, we also include the re-
flexivity axiom (x = z) among our initial assertions, and during the proof we may
apply the equality rule (both the left-to-right and right-to-left versions) as well
as the other predicate-logic rules. We need not include the axioms for equality
(other than reflerivity) as assertions in the tableau. |

Example (irreflexive restriction).  Consider the augmented theory formed
by adding to the theory of the weak partial ordering < the following axiom, which
defines the irreflerive restriction < associated with g
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=<y
(Vz g)y! = (irreflexive restriction)
z Xy and not(x =y)

It can then be shown that < is indeed a strict partial ordering, i.e., that « ig
transitive and irreflexive. This is stated in the irreflerive-restriction proposition of
the theory of the weak partial ordering =< (Section 6.6). We show the irreﬂexivity
of < here; its transitivity is left as an exercise (Problem 7 .6).

Suppose we would like to show the validity of the irreflezivity property
(V) [not (z < :c)] (srreflexivity)
in this theory.

We begin with a tableau over the theory of weak partial orderings that con-
tains, in addition to the reflexivity axiom for equality and the axioms for a weak
partial ordering, the definition of the irreflexive-restriction relation

assertions goals

At

=Y

T 2y and not(x =y)
(wrreflexive restriction)

as an initial assertion and the desired irreflerivity property,

Gl. (Vz)"[not (z < )]

as its initial goal.

By the V-elimination rule, we may drop the quantifier (V)" from the initial
goal G1, replacing the bound variable z with the skolem constant a, to obtain

G2. not |a< a

Applying the equivalence rule to the irreflezive restriction axiom and goal
G2, with {z < a, y « a}, we obtain the goal

G3. not (aja and not|a=a +)

Applying the resolution rule to the reflexivity axiom for equality,
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=

nd goal G3, we obtain the final goal

’— G4. true

In Problem 7.7 the reader is requested to provide a tableau proof of the
reflexive-closure proposition, i.e., that in a theory with equality defined by the
_axioms for a strict partial ordering, the reflexive closure < of < is a weak partial
~ ordering (Section 6.8).

ol

Remark (reflexivity of equality). In the final step of the previous example,
we applied the resolution rule to goal G3 and the reflexivity axiom (zx = z), to
obtain the goal G4. Resolution with the reflezivity axiom is a frequent step in
proofs in theories with equality. It will be convenient for us to apply this step
automatically whenever a positive subsentence of the form (¢ = t) appears in an
assertion or a goal. For brevity we may then say that goal G4 is obtained from
goal G3 “by the reflexivity of equality,” without giving the assertion or mentioning
the resolution step. We shall still annotate the subsentence (a = a) in G3 with a
box indicating its positive polarity.

If a positive subsentence of form (¢t = t’) appears, where t and ¢’ are unifiable
but not identical, we shall not apply the resolution step automatically. Also, we
shall mention the rule, the assertion, and the most-general unifier explicitly in

this case. J

THEORY OF GROUPS

We have defined the theory of groups (Section 6.7) as the theory with equality
whose special axioms are

(Vz)[zoe = z] (right identity)
(Vz)[zoz™! = €] (right inverse)
(Vz, vy, 2) [(a:-o y)oz = zo(yo z)] (associativity)

To prove the validity of a sentence S in this theory, we must prove the
following tableau with equality:



366 AXIOMATIC THEORIES: DEDUCTIVE TaBLEgyy

‘—-__-'--
assertions goals

% eg = oI (right identuty)

rox7! =e (right inverse)

(xoy)oz==xz0(yo2) (associativity)

S

R

Again, because this is a tableau with equality, it includes implicitly the . pe.
flexity axiom (z = x) among its assertions, and during the proof we may apply
the equality rule, as well as the other predicate-logic deduction rules.

Example (right cancellation).
of the property

vz g 2) rf xoz:yoz}

Suppose we would like to prove the validity

(right cancellation)
then =1y

in the theory of groups. Our deductive-tableau proof resembles the informal proof
of the same proposition in Section 6.7.

We consider the initial goal

assertions goals

v| Y Toz=yoz
Gl. (Vz,y, 2) [then By }

By the V-elimination rule, we may drop the quantifiers from goal G1, replac-

ing the bound variables z, y, and z with skolem constants a, b, and ¢, respectively,
to obtain

G2. if acc=boec
then o=b

By the if-split rule, we decompose goal G2 into the assertion and goal

A3. [aoc :boc]

G4. |a| = b

Applying the equality rule (right-to-left) to the right-identity axiom,
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soe = [2]|

and goal G4, with {z — a}, we replace a with a o e in the goal, to obtain

G5, aoce = |b

Applying the equality rule (right-to-left) once more to the right-identity axiom
and goal G5, with {z « b}, we replace b with bo e in the goal, to obtain

G6. aole| = boe

Applying the equality rule (right-to-left) to the right-inverse axiom,
; [:L‘ oxl=le ]

with { }, we replace the annotated occurrence of e in goal G6 with z o z71, to
obtain

- G7. ao(zxoz™!) = bole

We would like to apply the equality rule again to the right-inverse axiom and
goal GT7; these rows, however, have the free variable z in common. We rename
the variables in these rows to avoid this coincidence, to obtain

[:1:10:51_1= e ]

G7'. ao(zpozy') = bole

(To avoid future renaming, we have actually renamed z in both rows.)

Now we may apply the equality rule (right-to-left) to replace e with z, o zy!
in goal G7', obtaining
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GS8. aO(xgoa:z"l) - bO(a:Ioa:l_l)

By two applications of the equality rule (right-to-left) to the associativity
axiom,

[(mOy)oz = |zo(yo2) }_

and goal G8, with {z «— a, y « x5, z « :52_1} and then with {z — b, y — g,
z — 7'}, we may rewrite the goal as

G9. ( ao Ty ) o z3' = (box;)ox]!

By the equality rule, applied to assertion A3 and goal G9, with {zg « ¢},
we replace a o zo with bo ¢ in the goal, to obtain

1

G10. |(boc)oc™ = (boxy)oz]

At last, applying the resolution rule to the reflezivity axiom (z = z) and goal
G10, with {z, « ¢, z < (boc)oc™!}, we obtain the final goal

G11. true

Now that we have proved the right-cancellation property, we can add it as
an assertion to the tableau of any subsequent proof in the theory of groups. P

In Problem 7.8 the reader is requested to use the deductive-tableau tech-
nique to prove the following properties of the theory of groups:

(Vz)[eox = z| (left identity)
Va)lg " va = el (left inverse)
(Vz, y, 2) [?};GZ o; “:yz ° y} (left cancellation)

(Vx) [zf vor = a:] (nonidempotence)
then ¢ = e
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The following example illustrates how, within an axiomatic theory, we may
. define new functions by providing additional axioms.

Example (quotient).  Suppose we define the quotient = [y of two elements =
and y of a group by the following axiom:

(Vz, y) [w/y = 0o ?f'l] (quotient)

We would like to prove that the cancellation property holds, that is,

=
A
&
b
-
k

ol
-1
41

oy

(Vz,y) [(-’E/?J) oy = IE] (cancellation)

orpenir o

We attempt to prove the initial tableau over the theory of groups,

e
R T A

assertions goals

> (quotient)

| Gl (Yz,y)'[(z/y)oy = 7]

The gquotient axiom for the quotient function is included among the assertions;
because the tableau is over the theory of groups, the group axioms and previously
proved group theorems are also present.

4

By the V-elimination rule, we may drop the quantifiers of goal G1, to obtain

SR e

G2. |a/blob = a

By the equality rule, applied to the quotient axiom and the goal G2, with
{z < a, y « b}, we obtain

G3. |(aob™Y)ob| = a

By the equality rule, applied to the associativity axiom

[Gov)oz] = wo(yo2)

and goal G3, with {z « a, y < b™!, 2z « b}, we obtain
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Ga. aO( b-1ob ) - a]

By the equality rule, applied to the left-inverse property

[ s lor| = e]_

and goal G4, with {z — b}, we obtain

@5, [aoe=a| |
Applying the resolution rule to the right-identity axiom
Toe =gx| ‘
and goal G5, with {z < a}, we obtain the final goal
G6. true ﬁ‘

d
Note that the proof of the cancellation property depends on the proof of the
left-inverse property, which was requested as an exercise. Had we attempted to

prove the cancellation theorem without having proved the other theorem first,
the proof, of course, would have been more cumbersome.

In Problem 7.9 we interchange the roles of the quotient axiom and cancella-
tion property. We assume that the quotient function z/y is defined alternatively
by the axiom

(Vz, y)[(z/y) oy = =] (cancellation)

and ask the reader to prove that the quotient z/y is then the same as z o TR

that is,
(V z, y) [:L'/y = Lo y‘l] (quotient)

PROBLEMS

Use the deductive-tableau technique to carry out the following proofs.
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oroblem 7.1 (family theory) page 352

In the family theory, prove that

if Alice is the parent of her own father,
then Alice’s father is his own grandfather.

An informal argument to show this was requested in Problem 6.1.

Problem 7.2 (augmented family theory) page 352

Suppose we augment the family theory with the following axiom:

Vo, g 2) [ P@ ) and p(y, 2

then s(z, y) (sibling)

where s(z, y) is intended to mean that x and y are siblings.

In this augmented theory, show that

If the mother of Bob is a parent of Alice
then Alice and Bob are siblings.

]
"
3
i
o

More precisely:

(a) Find a sentence F whose intuitive meaning is given by the English sentence
" above. Let the constants a and b denote Alice and Bob, respectively.

ﬂ (b) Give a deductive-tableau proof of F in the family theory augmented by the
sibling axiom.

’ Problem 7.3 (redhead) page 352

' Suppose the grandparent theory is defined by the single axiom

3 (V¥ z, 2) [gp(:l:, z) = (3y)|p(=, y) and p(y, z)]] (grandparent)

Intuitively, this means that 2 is a grandparent of z if and only if, for some person y,
y is a parent of  and z is a parent of y. Within this theory, give a proof of the

following sentence:

_ gp(z, z) and
Zf (3 z, z) [Tﬁd(x) and not Ted(Z)]

p(x, 2) and
then (3 z, 2) Led(:z:) rd red(z)] (redhead)

Intuitively, if red(z) stands for “z is a redhead,” this means that if some redhead
has a nonredheaded grandparent, then some redhead has a nonredheaded parent.

Problem 7.4 (properties of equality) page 362

In a tableau with equality, show the following properties of equality:




372 AXIOMATIC THEORIES: DEDUCTIVE TABLEAYY

(a) Transitivity

vz, if 2=y and y=z
( myz)[then =z

(b) Symmetry

if z=y
(v 2, y) [then TR :1:]

(¢) Functional Substitutivity

v if 2=y
¥ a9, 2) [then £z, ) = f(y, 2)
(d) Predicate Substitutivity

fr=y
Vz, vy, 2) [then q(z, z) = q(z, y)] :

Problem 7.5 (valid equality) page 362
Let F[z] stand for the sentence
if f(g(z)) ==
Flz): (Vy, 2) |then if g(y) = g(2)
then h(g(y), z) = h(g(z), y) _

(a) In a deductive tableau with equality, prove the validity of (3 z)F[z].
(b) Show that (Vz)F[z] is not valid in the theory of equality.

Problem 7.6 (irreflexive restriction) page 364

In the theory of a weak partial ordering <, prove that the irreflexive restric-
tion < associated with < is transitive, that is,

if t<y and y<z
(Va,y, 2) | =% and y

(transitivity)
then z < 2

Problem 7.7 (reflexive closure) page 365

Consider a theory with equality defined by the axioms of the theory of a

strict partial ordering <. Prove that the corresponding reflezive-closure relation,
defined by

Ty

Vz,y) | = (reflexive closure)
T<y or T=y

is a weak partial ordering, i.e., that the following properties hold:
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(a) Transitivity
(Vo y, 2) [z’f z <Xy and yjz]

then = <z
t (b) Antisymmetry
. if <y and y<=zx
(Vz, 9) [then % 5 Y ‘

(c) Reflexivity
(Vz)[z < ).

Problem 7.8 (theory of groups) page 368
Prove the following properties of the theory of groups:
(a) Left identity
(Vz)[eoz = ]
(b) Left inverse
(Vz)[z7l oz = €]

(c) Left cancellation

if zod = zoy
(Vz, y, 2) [then mEg ]

(d) Nonidempotence

if aexw = @
(V) Lhen T=e ]

Problem 7.9 (quotient versus inverse) page 370

! Suppose we define the quotient z/y of two elements z and y of a group by
the following axiom:
vz, y9)[(z/y)oy = x| (cancellation)

Prove that the quotient z/y is then the same as z o y~ !, that is,

(Vz,y)[z/y = zoy™!] (quotient)




