Nonnegative
Integers

The most important axiomatic theories for us will be those defined by the principle
of mathematical induction. This principle is represented here as an axiom schema,
an infinite set of axioms, like the functional- and predicate-substitutivity axioms
for equality. Theories with induction include those of the nonnegative integers,
tuples, trees, and other fundamental structures. We begin with the nonnegative
integers, which are the most familiar and the most important.

8.1 BASIC PROPERTIES

In the theory of the nonnegative integers, we define
e A constant symbol 0, denoting the integer zero
e A unary function symbol rt, denoting the successor function
e A unary predicate symbol integer(z).

The reader should understand that 0 is an informal notation for a constant
symbol (such as a or b) and is not to be confused with the actual integer zero,
which is a domain element. Under the intended model for the theory, the symbol
0 will be assigned the integer zero as its value.

Also the symbol 7 is an informal notation for a unary function symbol (such
as f(z) or g(z)). Under the intended model for the theory, the function symbol

o+ will be assigned the successor function, i.e., the function that maps the integer
d into the integer d + 1.
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The terms of the theory include
0, 0, (0")*, ((07)")*, |
Conventionally, 0% is abbreviated as 1, (07)* as 2, ((07)*)* as 3, and so fOrth,i
The symbols 1, 2, 3, ... are merely informal abbreviations for these terms; the

are not notations for constant symbols. Under the intended model they denotez
the actual domain elements one, two, three, . ]

The predicate symbol integer(z) is intended to be true if z is assigned
nonnegative integer, and false otherwise. In the simplest models for the theory,
all the domain elements will be nonnegative integers, and hence integer(z) wigi b
always be true. Later, however, we shall introduce elements into our domain thag -
are not nonnegative integers; the predicate symbol integer(x) will then be useq
to distinguish between the nonnegative integers and the other domain elements, 1

The theory of the nonnegative integers is a theory with equality defined by
the following axioms:

e The generation axioms

integer(0) (zero)

(V integer x) [z’nteger(x*’)] (successor)

e The uniqueness axioms

(V integer z)[not (z* = 0)] (zero)

ot = gt
i @ ¥ ] (successor)

(V integer z, y) [then r=y

e The induction principle

For each sentence F[z] in the theory, the universal closure of :
the sentence
F[0] 1
and '
; if Flz]
Y int
(¥ nteger &) [then .’F[a:"']]

(induction)

if

then (V integer z)F|[z]

is an axiom.

The two generation axioms have the intuitive meaning that any element that
can be constructed from the zero element 0 and the successor function gt isd
nonnegative integer. Thus 0, 0%, (0%)*, ... all denote nonnegative integers-
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The two uniqueness axioms have the intuitive meaning that each nonnegative
integer can be constructed in at most one way from the zero element 0 and
the successor function z*. Thus 0, 07, (0*)*, ... denote distinct nonnegative
integers.

Note that the axioms for the theory include two zero axioms and two successor
axioms. In referring to them later we shall always discriminate between them by
speaking of the zero generation axiom or the zero uniqueness axiom and of the
successor generation axiom or the successor uniqueness axiom.

The induction principle is actually an axiom schema, because 1t represents
an infinite set of axioms, one for each sentence F[z] in the theory. The sentence
F|x] is called the inductive sentence. The subsentence

Fo]
is called the base case of the induction. The subsentence
) if Flx)
t
(V integer x) [then F[mﬂ]

s called the inductive step; the subsentences F[z] and F[z™] of the inductive step

are called the induction hypothesis and the desired conclusion, respectively. The
variable z is called the inductive variable.

The inductive sentence F[z] may have free variables other than z. The
induction principle asserts that the universal closure of the implication is valid,

i.e., true under every model of the theory. This implies that the implication itself
is true under every model.

The induction principle may be paraphrased intuitively as follows:

To show that a sentence Flz] is true for every nonnegative

integer z (under a given interpretation), it suffices to show the
base case

F[0] is true
and the inductive step

for an arbitrary nonnegative integer z,
if Flz] is true,
then F[z + 1] is also true.

The induction principle states that, to show that a sentence is true for all the
nonnegative integers, it suffices to show that the sentence is true for 0 and that,
whenever it is true for a nonnegative integer z, it is also true for the successor 7.
Therefore it is true for 0% (by one application of the inductive step), for oty
(by another application of the inductive step), and so forth.

In Problem 8.13, the reader is requested to show that a schema obtained
by renaming a bound variable in the induction principle, which is therefore ap-
parently equivalent to the induction principle, is actually not valid. (This exercise
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is included as one of the last problems in this chapter because of its theoreticu.=
nature.) :

Since the theory of the nonnegative integers is a theory with equality, ye
include the equality axioms. In particular, we have the appropriate instances of
the substitutivity axiom schemata, 3

[if z=y ' tutivi N
Vz, y) (then ot = y+} unctional subsiitutivty Jor 27)
i =y
(vxa y) -then intege’r(:lj) — Znteger(y)]

(predicate substitutivity for integer)

In the intended model for the theory, the domain consists of the ordinary
nonnegative integers 0,1,2,... and the function symbol zt is assigned the suc-
cessor function over the nonnegative integers. The reader will see (in Chapter 14)
that there are actually some quite different “nonstandard” models for this theory.

In this chapter, when we speak about the validity of a sentence, we shall
always mean validity in the theory of the nonnegative integers. Let us show the =
validity of a sentence in this theory. ;

Proposition (decomposition) :
The sentence

g ) if not (z =0) d tion) ‘_
ecompositi

(V integer z then (3 integer y) [m = y“”] P on

is valid (in the theory of the nonnegative integers). 3 "

Proof. The proof employs the instance of the induction principle in which the %
inductive sentence is taken to be
if not (r=0
Flal / ( _ ) 4 1
then (3 integer y)[z =y ] ' )

g

To show
(V integer x)F[z]
(under an interpretation), it suffices, by the induction principle and propositional
logic, to establish the base case,
Flo],
and the inductive step,
| if Fla
(V integer x) [t{zen [_75]'[:5"”]}

We show the base case and the inductive step separately.




8.1 BASIC PROPERTIES 381

Base Case

We want to show

o] if not (0 =0)

then (3 integer y) [0 = y+] ‘
Because (by the reflezivity axiom for equality) 0 = 0, the antecedent
not (0 = 0)

of this implication is false and therefore the entire sentence is true.

Inductive Step

We want to show

N [Z{a;[?[m].
that is, ;
i [if not (z = 0) ] :
(V integer 3;) then (3 nleger y)[.?: = y*]
then [if not (37+ =0) ]
f then (3 integer y)[zt =yT]| |

Consider an arbitrary nonnegative integer x, that is, an element z such that
integer(x).

We assume the induction hypothesis
if not (z =0)
then (3 integer y) |z =y
and would like to show the desired conclusion

Flat] if not ($.+ =0)

then (3 integer y) [:1:+ = y+].

It suffices to show the consequent,

Fle] =

(3 integer y) [z = yT],
of the desired conclusion Flz7].

Because we have supposed integer(z) and we know (by the reflerivity axiom
for equality) that zt =z, we have
integer(x)
and
g g

Therefore (by the existential quantifier-instantiation proposition, taking y to be
z) we have

nteger(y)

(Fy) and
gt =yt
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or, in terms of our relative quantifier notation,
(3 integer y) [zt = y*],
as we wanted to show.

Since we have established both the base case and the inductive step, the {f
proof is complete. P :

The above proof has the unusual feature that it requires the induction prip.
ciple but makes no use of the induction hypothesis in the inductive step. Never.
theless, the principle is essential in this proof. If the principle were deleted from
the theory of the nonnegative integers, there would be models for the resulting
theory under which the decomposition property would not be true. The reader g
requested to show this in Problem 8.14. (This problem, like Problem 8.13, js
placed late in the list because of its theoretical nature.)

8.2 THE ADDITION FUNCTION

Suppose we augment our theory of the nonnegative integers by formulating two
axioms that define a binary function symbol z + y, denoting, under the intended
model, the addition (plus) function over the nonnegative integers. As usual,
T +y is merely a conventional notation for a standard binary function symbol of
predicate logic, such as fo7(z, y).

The axioms for addition are as follows:

(V integer z)|z + 0 = z (right zero)

(V integer z, y) [z +yT = (z+y)T] (right successor)

As usual, when we introduce a new function symbol into a theory with
equality, we automatically provide the corresponding instances of the functional-
substitutivity axiom schema for addition, that is,

[if z=1y ]
then T+ 2z=y+z

(Vz, y, z) (left functional substitutivity)

and

(Vz, y, 2) ng —_; _!:_ % 5= il (right functional substitutivity)

We also provide those instances of the induction principle for which the inductive
sentence F[z] contains occurrences of the new symbol z + y.

The right-zero and right-successor axioms for addition are in the form of
a typical “recursive” definition for the function. The right-zero axiom defines
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the function for the case in which its second argument is 0. The right-successor
axiom defines the function for the case in which its second argument is of form
y*+; the value of x + y* is defined in terms of the value of z + y. Because (by
the decomposition proposition) the second argument must either be 0 or of the
form y*, the two axioms cover all possibilities. These axioms suggest a method
for computing the addition function, as we shall see in a subsequent remark.

As before, whenever we add new axioms to a theory, we run the risk of making
it inconsistent. Usually we disregard this issue and assume that the axioms we
provide do not introduce inconsistencies. One can show that the axioms for
addition, and in general other sets of axioms of the same (recursive) form, preserve
the consistency of the theory.

It may not be obvious that the right-zero and right-successor axioms actually
define the addition function we are familiar with in everyday life. We cannot state
or prove this within the theory, but we can try to convince ourselves that it is
so by showing that the function defined by the axioms satisfies the properties we
expect the addition function to have.

In our augmented theory we can establish the validity of the following prop-
erties of addition:

(V integer z, y) [integer(z + y)] (sort)
(V integer x) [a: +1 = z7] _ (right one)
(V integer ) [0 +z = :n] (left zero)
(V integer x, y) [(n: +D)+y=(z+y)+1] (left successor)
(V integer x, y) [x +y=y+z] (commutativity)

The sort property establishes that the result = +y of adding two nonnegative
integers is also a nonnegative integer.

Recall that, in the right-one property, 1 is merely an abbreviation for 0", the
binary function symbol + in the term z+1 denotes the addition function, and the
unary function symbol * in the term z* denotes the successor function. Once
we have established the right-one property, we can use the more conventional
expression ¢ + 1, rather than ¢*, to denote the successor of t, for any term ¢ that
denotes a nonnegative integer. For example, in the left-successor property, we
write £+ 1 and (z +y) + 1, in terms of the addition function, rather than zt and
(z +y)*, in terms of the successor function.

The order in which the properties are presented is significant; some of their
proofs make use of earlier properties on the list. We will give proofs for the last
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four of these properties, illustrating various features of mathematical PToofs; tha
proof for the first one is routine and is left as an exercise (Problem 8-1(a)3 '.-..'

PROOF WITHOUT INDUCTION

er b'eg'm with the right-one property; its proof does not require the Mdudion:{
principle. 1
Proposition (right one)
The sentence
(V integer z)[z+1 = -
1s valid.

Proof.  Consider an arbitrary nonnegative integer x, that is, an element z such
that

integer(x).
We would like to prove that
pde) = gt
Because 1 is an abbreviation for 0%, we actually want to show

z+0" = ¢+,

Because integer(z) and (by the zero generation axiom) integer(0), we have
(by the right-successor axiom for addition)

(1) r+0t = (z+0)*.

Because integer(z), we have (by the right-zero axiom for addition)
40 = g
Therefore, by the functional-substitutivity equality axiom for the successor func-
tion,
(1) (x+ 0yF = =+,

Finally, by (1), (1), and the transitivity axiom for equality, we obtain
z+0T = zT,
as we wanted to show. 4
As usual, in the above proof we have invoked basic properties of predicate
logic without mentioning them. For example, when we applied the functional-
substitutivity axiom to derive (I), we appealed implicitly to the universal .rt of

the quantifier-instantiation proposition. Let us now discuss some other features
of the above proof.
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Remark (sort conditions). In the above proof, before we could apply the
right-successor axiom for addition to conclude (1), that

z+0" = (z+0)F,
it was necessary to establish the “sort conditions” that z and 0 are both nonneg-
ative integers, that is, :

integer(z) and integer(0).

This i1s because the axiom reads (after renaming the bound variables to avoid
confusion)

(V integer u, v)[u+ vt = (u+v)*]
or, abandoning the relative quantifier notation,
if integer(u) and integer(v)
(Vu,v) + +
then u+vt = (u+v)
In other words, the axiom applies only if © and v are nonnegative integers.
In particular, taking u to be z and v to be 0, we have
if integer(xz) and integer(0)
then £+0% = (z+0)7.
Then, because integer(z) and integer(0), we can conclude that
z+ 0t = (z+0)T,

as we did in the proof.

For the same reason, before we could apply the right-zero axiom for addition,
to conclude that

z+0 = z,
it was necessary to establish that z is a nonnegative integer, that is,

integer(z).

In future proofs we shall not always bother to establish such sort conditions,
i.e., that the terms we construct denote nonnegative integers, since these aspects
of a proof tend to be repetitive and straightforward. Sort conditions may be
assumed without proof in all the exercises, unless otherwise requested. 3
Remark (equality).  We shall assume henceforth that the reader is so familiar

with the theory of equality that we do not need to mention its properties explicitly
during a proof.

Thus we may abbreviate the above argument, showing that z + 0" =z, as
follows:

for an arbitrary nonnegative integer z,
z+0" = (z+0)*
(by the right-successor axiom for addition)
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= zt

(by the right-zero axiom for addition).

Here we have not mentioned the functional-substitutivity and transitivity aXiomg ;j
for equality. 3

We have established the right-one property, i.e., that
(V integer z)[z +1 = z].
In particular, for any term ¢, we may conclude (by the universal quantifier.
instantiation proposition) that
if integer(t)
thent+1=1t"%.
Hence (by the substitutivity of equality) if ¢ stands for a nonnegative integer, any
sentence F (t*) containing the term ¢* is equivalent to the corresponding sentence
F(t+1) containing instead the term ¢+ 1. Therefore as we have remarked earlier,

we may now use the conventional notation ¢ + 1 freely in place of our original
notation ¢*, to denote the successor of t.

Remark (computation of addition).  The axioms for the addition function
can be used to prove properties of the function, such as the above right-one prop-
erty. Furthermore, the axioms actually suggest a way to compute the function, in
terms of the constant 0 and the successor function z+. In other words, the axioms

can be regarded as a “program” for performing addition. This is illustrated by
the following example.

Suppose we would like to compute 3+ 2, that is, ((07)*)* + (0%)*. In other
words, we would like to find a term equal to ((0%)*)* + (07)* expressed solely in
terms of the constant 0 and the successor function 1, not the addition function
z + y. We have

((0F)H)* + (0%)+ = (((01)*)+ + 0)*
(by the right-successor axiom for addition)
= (((0M)")F + 0)")*
(by the right-successor axiom for addition)
= ((((0")")")")F
(by the right-zero axiom for addition).
In short,
(")) + (0H)* = ((((0F)F)")")*,
that is,
3+2=05.
In the computation we have applied properties of equality without mentioning

them explicitly. We have also disregarded the sort conditions, e.g., that integer(0)
and integer(0%) are true. P
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A SIMPLE INDUCTION PROOF

The proof of the right-one property did not require induction. The proof of the
decomposition property did use induction, but the inductive step did not use the
induction hypothesis. Now let us consider a proof that makes use of the induction
principle in a more conventional way.

Proposition (left zero)
The sentence

(V integer z)[0 + 2z = x]

is valid.
is vali 3

Proof. The proof employs the instance of the induction principle in which the
inductive sentence is taken to be

Flz]: 04z = =z.

To prove
(V integer z)F|z],

it suffices, by the induction principle, to establish the base case,
Flol,

and the inductive step,

(V integer x) [if i ]

then Flz + 1]
(Note that here we use the more familiar notation x + 1 rather than zt.)
We establish the base case and the inductive step separately.
Base Case
We want to prove
F[0]: 0+0 = 0.
But this is an instance of the right-zero axiom for addition,
(V integer z)[z +0 = z).
Inductive Step
We want to prove

(¥ integer x) {if Fizl ] |

then Flz + 1]

For an arbitrary nonnegative integer x, we assume the induction hypothesis
Flz]: 04+z ==
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and attempt to establish the desired conclusion
Flz+1]: O0+(x+1) = z+1.
But we have
0+(x+1) = 0+x)+1
(by the right-successor axiom for addition)

=z+1

(by our induction hypothesis). P

CHOICE OF VARIABLES

The principle of mathematical induction states that

for all sentences F[z] in the theory of the nonnegative integers, the
universal closure of

F10]

and

if (V integer x) [i{zef[?[x * 1]}

then (VY integer x)F|z]
is an axiom.

Note that z can be taken to be any variable; thus we can apply the principle
to prove sentences (V integer z)F [#] by “induction on z,” (V integer y)F ly] by
“induction on y,” or (V integer z)F[z] by “induction on z,” and so forth.

The following proposition illustrates a proof by induction on y.

Proposition (left successor)

The sentence
(V integer z, y) [(z+1)+y = (x+y)+ 1]

is valid. 3

Proof. Consider an arbitrary nonnegative integer r; we attempt to prove
(V integer y)[(z +1) +y=(z+ y) + 1].

The proof is by induction on y; we take the inductive sentence to be
Fly]: (z+1)+y = (z+y)+1

To prove
(V integer y)Flyl,




8.2 THE ADDITION FUNCTION 389

it suffices, by the induction principle, to establish the base case,
Flo],
and the inductive step,

(V integer y) {z{zef[y}[y + 1]] '

We establish the base case and the inductive step separately.
Base Case

We would like to prove
F0]: (z+1)+0 = (z+0)+1.
But we have
(z+1)+0 = z+1
' (by the right-zero axiom for addition)

= (z+0)+1
(by the right-zero axiom for addition again).

Inductive Step

For an arbitrary nonnegative integer y, we assume the induction hypothesis
Flyl: (z+1)+y = (z+y) +1
and attempt to prove the desired conclusion
Fly+1: (z+D)+@+1) = (z+(y+1))+1.
But we have
+1)+@y+1) = (z+1)+y)+1
(by the right-successor axiom for addition)

= ((z+y)+1) +1
(by our induction hypothesis)

= (z+(y+1))+1
(by the right-successor axiom for

addition again). 5

Note that in the above proof the inductive sentence F[y], that is,
(z+1)+y = (z+y)+1,
contained free occurrences of x as well as y.

Remark (choice of variables).  The proof illustrates some of the strategic
aspects of the use of the induction principle. It might seem more straightforward
to attempt the proof by induction on z, taking the inductive sentence to be

Flz]: (¥ integer y)[(z +1)+y = (z+y)+1].
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In such a proof, we would first attempt to establish the base case

FO]: (Y integer y)[(0+1)+y = (0+y)+ 1].

Considering an arbitrary nonnegative integer y, we would try to prove
0+1)+y = (0+y)+1

or, equivalently (by two applications of the left-zero property of addition),
14y = y+ 1

For this purpose, we would have to prove that
(V integer y)[1+y = y+1],

requiring an additional application of the induction principle, on y. An attempt

to establish the inductive step of such a proof would lead to similar obstructions,

In other words, a decision to use induction on z, rather than on y, in proving
the left-successor property of addition would lead to a needlessly complicated
proof. In general, part of the strategic aspect of using the induction principle is
deciding on which variable to do induction. This decision depends on the axioms
and properties we have available. Sometimes an unsuccessful proof attempt will

suggest a variable on which to do induction. 3

USE OF EARLIER RESULTS

Once we have established the validity of a sentence in the theory of the nonneg-
ative integers, we can use it in the proofs of other sentences, just as we would I
use an axiom. The proof of the following commutativity property relies on the
validity of the left-zero property,

(V integer z)[0+ 2 = ‘ s
and the left-successor property,

(¥ integer z, y)[(z + 1) +y = (z+y)+1],
which we established in the preceding sections.

Proposition (commutativity)

The sentence
(V integer T, y)[z +y = y + 2]

is valid. P

Proof. Consider an arbitrary nonnegative integer z; we would like to prove

(¥ integer y) [z +y = y+ x|
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The proof is by induction on y; we take the inductive sentence to be
Fly]: z+y = y+=.

To prove
(V integer y)Flyl,

it suffices, by the induction principle, to establish the base case,
F1o],

and the inductive step,
i [178,,

Base Case

We would like to prove
F0]: z+0 = 0+=.
But we have

z+0 ==z
(by the right-zero axiom for addition)

=042z
(by the left-zero property of addition).
Inductive Step

For an arbitrary nonnegative integer y, we assume the induction hypothesis
Fly): z+y =y+«z
and attempt to establish the desired conclusion
Fly+1: z+(@y+1) = (y+1)+=
But we have

z+(y+1) = (z+y)+1
(by the right-successor axiom for addition)

= (y+z)+1
(by our induction hypothesis)

= y+1D+z

(by the left-successor property of addition). 3

The proof of the commutativity proposition for addition above made use
of the left-zero and the left-successor properties of addition, whose validity we
established earlier. Had we attempted to prove the commutativity proposition
without having proved the other two properties first, we would have had to include
the proof of the two required properties within the proof of the proposition,
making the combined proof rather unwieldy.
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We can also establish the validity of the following properties of the additiop 1
function:

(V integer =, y, 2)[(z+y)+2z=2+ (Y + z)| (associativity)

(left cancellation)

. if 2z4z=2z+y
A
(V integer z, y, 2) {then fao. l

(V integer x, y, 2) {zf Ete=g z}

then ==y (right cancellation)

(V integer x, y) [zf £+y=0 0]

then T = O and y = (annih’ilation)

The proofs are left as an exercise (Problem 8.1(b)-(e)).

Note that once we have established the associativity property of addition we
can freely use the conventional notation 1 + s + 1, rather than (r + s) +t or
r + (s + t), because both terms have the same value under every model.

8.3 MULTIPLICATION AND EXPONENTIATION

In this section we extend the theory by defining two new functions. We shall also
illustrate some of the strategic aspects of using the induction principle.

MULTIPLICATION

Let us further augment our theory of the nonnegative integers by introducing
axioms that define a binary function symbol z - y, denoting, under the intended
model, the multiplication (times) function over the nonnegative integers.

The axioms for multiplication are as follows:

(V integer z)[z-0 = 0] (right zero)

(V integer z, y) [z-(y+1) =z-y+ z) (right successor)

We write - y + = as an abbreviation of (z - y) + .
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As before, we introduce the corresponding instances of the functional-substi-
tutivity equality axiom schema for multiplication automatically:

[if t=y
(Vma y) z) Lthen CC'Z:y'Z_

(left functional substitutivity)

-

(Vz,y, z) yz=y

then z-2 =2y (right functional substitutivity)

We also introduce automatically those instances of the induction principle for
which the inductive sentence contains occurrences of the new function symbol
z - y. Henceforth we shall not mention these additional axioms.

Note also that we retain the axioms that define the addition function.

In our augmented theory we can establish the validity of the following prop-
erties of multiplication:

(V integer z, y) [integer(z - y)] (sort)
(V integer z)[z-1 = ] (right one)
(V integer £)[0-z = 0] (left zero)
(V integer z, y)[(x +1) -y = z-y + y] (left successor)
(V integer z)[1-z = z] (left one)

From these properties we can establish the associativity, commutativity, and
distributivity of multiplication:
(V integer x, y, z)[a: (y+z2) =z-y+z- 2] (right distributivity)
(V integer z, y, 2)[(z-y) -z = - (y- z)] (associativity)

(V integer z, y)[z-y = y- ] (commutativity)

(V integer z, y, 2)[(x+y)-z2 = T 2 + y- z]  (left distributivity)

The proofs of all these properties are left as an exercise (Problem 8.2). As
usual, the order in which the properties are presented is significant; some of their
proofs make use of earlier properties on the list.
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EXPONENTIATION

Let us augment our theory of the nonnegative integers further by introducing twt)
axioms that define a binary function symbol z¥, denoting, under the intended’
model, the exponentiation function over the nonnegative integers.

The axioms for exponentiation are as follows:

(V integer z)[z° = 1] (exp zero)

(V integer z, y) [zt = a¥ - x| (successor)

(Note that, under these axioms, 0° is taken to be 1, not 0.)

From these axioms we can establish the validity of the following propertieg
of exponentiation: :

(V integer z, y) [integer(z¥)] (sort)
(V integer z)[z! = z] (exp one)
(V integer y) [i{;ezof)y(i:[)m] (zero ezxp)
(V integer y) [1?’ = 1] (one exp)
(V integer «, y, 2)[z¥*% = (a¥)- (z7)] (exp plus)
(V integer z, y, z) [z¥* = (z¥)?] (exp times)

The proofs of these properties are left as an exercise (Problem 8.3).

THE NEED FOR GENERALIZATION

In proving a property by mathematical induction, it is frequently necessary t0
prove a stronger, more general property instead. This phenomenon is illustrated |

in the proof of the following proposition. |

i

Proposition (alternative exponentiation)

Suppose we define a new ternary function, denoted by exp3, by the
following two axioms:
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(V integer z, z)[ezp3(z, 0, 2) = 2] (zero)

(V integer z, y, 2) [e:z:pS(a:, y+1,2) = expd(z,y, :cz)] (successor)

Then the sentence
(V integer x, y)[ezp3(z, y, 1) = Y| (special expd)

is valid.
valid 3

Before we prove the proposition, let us explain the ezp3 function. For any
nonnegative integers z, y, and z, the function is defined in such a way that
exp3(z, y, z) = z¥- 2.

Following the axioms, to compute exp3(z, y, z) we multiply z by x precisely
y times.

Example (computation of exp3). We have
exp3(3, 2, 4) = exp3(3, (0+1)+1, 4)
(because 2 is an abbreviation for (0 + 1) + 1)

= exp3(3, 0+ 1, 3-4)
(by the successor axiom for exp3)

= exp3(3, 0, 3-3-4)
(by the successor axiom for ezp3 again)

e 3 .3 4
(by the zero axiom for exp3).
In other words

exp3(3, 2, 4) = 3-3-4 = 324

The proposition suggests that we can use the axioms for exp3(z, y, 2) as an
alternative method for computing z¥, simply by taking 2 to be 1 and computing

exp3(zx, y, 1).

Let us prove the proposition.

Proof (alternative exponentiation).  Rather than proving the original special
expd property, :

(V integer z, y) [e:cp3(a:, . 1) = :ny],
we prove instead the stronger, more general property
(V integer z, y, 2) [e:r;pB(a:, y, z) = ¥ z] (general exp3)

which fully characterizes the exp3 function.
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Once we have proved the general exp3 property, we can infer the deSired;
special exp3 property easily. For consider arbitrary nonnegative integers x ayp ,,.
we have "9

expd(z, y, 1) = z¥-1
(by the more general sentence)
= gV
(by the right-one property of multiplication).
To prove the general exp3 property, consider an arbitrary nonnegative Integer
x; we would like to show
(V integer y,z)[expB(:r, y, 2) = Y- z]
The proof is by induction on y, taking the inductive sentence to be
Flyl: (¥ integer z)|exp3(z, y, z) = z¥- z].
Base Case
We would like to prove
FI0]: (Y integer 2)[exp3(z, 0, z) = z°- z].
For an arbitrary nonnegative integer z, we have
exp3(z, 0, 2) = 2
(by the zero axiom for exp3).
But on the other hand, we have
202z = 1-2
(by the exp-zero axiom for exponentiation)
= %
(by the left-one property of multiplication).
Inductive Step
For an arbitrary nonnegative integer y, we assume the induction hypothesis
Fly]: (¥ integer z)|exp3(z, y, 2) = z¥- z
and attempt to show the desired conclusion
Fly+1]: (Y integer Z')[exp3(z, y+1, 2') = (zv+1) - 2'].

(Here we have renamed the bound variable z of the desired conclusion to Z/, to
avoid confusion with the variable z in the induction hypothesis.)

For an arbitrary nonnegative integer z’, we have
exp3(z, y+1, 2') = expd(z, y, = -2')
(by the successor axiom for exp3).
But on the other hand, we have
(¥t .2 = (z¥V-z)- 2

(by the successor axiom for exponentiation)
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=z¥-(x-2')
(by the associativity property of multiplication)
= exp3(z, y, - 2')
(by the induction hypothesis, taking z to be x - 2’).
In short, we have established that
6$p3($, y+1, Z’) = (Iy+1) ' zfi
as we wanted to show. P

The proof of the above proposition illustrates some of the strategic aspects
of discovering a proof by induction.

Remark (generalization). @ We proved the original special exp3 property
(V integer z, y)[exp3(z, y, 1) = zY]

by establishing the general exp3 property
(V integer z, y, z)[e:cp:}(x, U 2) = g¥s z]

Had we attempted to prove the special ezp3d property without first generalizing,
the above proof would not have worked. It would be difficult to establish the
original property directly, because in establishing the inductive step in the proof,
we would assume the induction hypothesis,

F'ly]: ezpd(z, y, 1) = z¥,

and attempt to prove the desired conclusion,
F'lly+1]: expd(z, y+1,1) = zvtl.

It suffices to show (by the successor axioms for exp3 and exponentiation) that
expd(z, y, x-1) = z¥-z.

The desired conclusion is concerned with exp3(z, y, - 1), that is, exp3(z, y, z),
while the induction hypothesis gives us information only about exp3(z, y, 1).

Thus in attempting to prove the original weaker property, we have a cor-
respondingly weaker induction hypothesis, one that is no longer strong enough
to prove the desired conclusion. By proving the more general property, we have
the advantage of the correspondingly more general induction hypothesis. For the
alternative-exponentiation proposition, it is paradoxically easier to prove the more
general, stronger property than it is to prove the weaker special case.

In proving a property by induction, it often requires ingenuity to discover a
generalization that enables the proof to go through. Sometimes an unsuccessful

attempt to prove the original property will suggest an appropriate generaliza-
tion. r
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Generalization is also required to solve Problem 8.4, which is CODCern::
with the factorial function z!.

Remark (treatment of quantifiers). In proving the property
(V integer x, y, z) [e:rp3(:1:, Yy, 2) = z¥. z],
we treated each of the quantifiers differently:

e To dispose of the quantifier (V integer x), we considered an arbitrary
nonnegative integer at the beginning of the proof.

e To dispose of (V integer y), we performed induction on .
e To dispose of (V integer z), we allowed the quantifier to remain in the

inductive sentence F[y] and considered arbitrary nonnegative integers -
both in the base case and in the inductive step.

The success of a proof may depend on how we treat quantifiers. To see this,
the reader may attempt to prove the property differently, e.g., by induction on g , .
taking the inductive sentence to be '

(V integer y, z)[exp3(z, y, z) = z¥ - zls
The proof will be considerably more complex.
Had we originally been given the quantifiers in a different order, say,
(V integer z, z, y) [exp3(z, y, 2) = z¥-z],

we would have needed to reorder them. If we had chosen arbitrary nonnegative
integers x and z before performing induction on y, the inductive sentence would
have had no quantifiers and both the induction hypothesis and the desired con-
clusion would contain the same variable z. The step in the above proof in which
we took z to be z - 2/, where 2 and 2’ are the bound variables of the induction
hypothesis and the desired conclusion, respectively, would have been impossible.

The decision about how to treat each quantifier depends on the form of the &

axioms and properties we have for our function and predicate symbols. J

8.4 PREDECESSOR AND SUBTRACTION |

Before we define the predecessor and subtraction functions, let us introduce a
useful unary predicate symbol.

POSITIVE

We augment our theory by defining a unary predicate symbol positive(z). r«not-
ing, under the intended model, the relation that is true for positive integers and
false for zero. It is defined by the axiom
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positive(z)
(Vz) | = (positive)
integer(z) and not (z = 0)

Using this predicate symbol in relativized quantifiers enables us to abbreviate
many properties. For example, we can express the decomposition property for the
nonnegative integers, that is,

if not (z =0)

(V integer x) [then (3 integer y)[r =y + 1]

as
(V positive z)(3 integer y)[z =y + 1]_
From the zero uniqueness axiom, it follows that
(V integer z)[positive(z + 1)] (sort)
PREDECESSOR

Suppose we augment our theory by introducing axioms to define a unary function
symbol 7, denoting, under the intended model, the predecessor function over the
nonnegative integers, i.e., the function that maps the positive integer d into the
integer d — 1. The axiom for the predecessor function is

(V integer z)[(z + 1)~ = z] (predecessor)

Remark (the value of 0~).  Note that the above axiom does not specify the
value of the term 0~. Although this term is legal in the language, the axioms do
not force it to have any particular value.

For example, we might have many different models for the augmented theory
over the nonnegative integers, each assigning a different value to the term 0.
This vagueness is intentional; we do not care what the value of 0~ is under a
model for the augmented theory. 3

In the augmented theory, we can prove the following properties of the prede-
cessor function:

(V positive z)[integer(z™)] (sort)

(V positive t)[z = z~ + 1] (decomposition)

The proof of the sort property is omitted; the proof of the decomposition property
is left as an exercise (Problem 8.5(a)). Our earlier decomposition property

(V positive z)(3 integer y)[z =y + 1]
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follows immediately from this one by the existential quantifier-instantiation prqy,
sition. 0%

SUBTRACTION

Suppose we augment our theory further by formulating axioms that defipe i:’
binary function symbol z — y, denoting the subtraction (minus) function undep
the intended model for the nonnegative integers. 3

The axioms for the subtraction function are as follows:

(V integer x)[z — 0 = x] (right zero)

(V integer z, y)[(z+1) —(y+1) = = — y] (successor)

Example (computation of minus).  To illustrate the axioms, we show the f
computation of the value of 3 — 2. We have

3-2 = (((0+1)+1)+1) — ((0+1)+1)

= ((0+1)+1) — (0+1)
(by the successor axiom)

= (0+4+1)-0
(by the successor axiom again)

=0+1
(by the right-zero axiom)

In short,

3—-2 = 1. J

Remark (unspecified values).  Note that these axioms do not specify the
value of terms of the form s — ¢, where the value of s is less than the value of t.
Although such terms are legal in the language, the axioms do not force them to
have any particular value.

For example, we might have many different models for the extended theory,
each assigning a different domain element to the term 2 — 3, that is,

(0+1)+1) = (((0+1)+1) +1).

However, according to the successor axiom, the value assigned to the term
(0O+1)+1) = ((0+1)+1) +1)

must be the same as the value assigned to
(041)— ((0+1)+1),

whatever that is. 3
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In the augmented theory, we can prove the following properties of subtraction:

(V positive z)[r —1 = z7) (right one)

(V integer z, y)[(z +y) —y = :c] _ (addition)

The proofs of these properties, and an additional one, are left as an exercise
(Problem 8.5(b)-(d)).

Note that in the right-one property the function symbol — in  — 1 denotes
the binary subtraction function, while the function symbol = in the term z~
denotes the unary predecessor function. Once we have established this property,
we may use the more conventional notation ¢t — 1, in place of t~, to denote the
predecessor of t, if we know that ¢ is positive.

Problem 8.6 introduces a new axiom for the subtraction function.

DECOMPOSITION INDUCTION

Using the definition of the predecessor function, we can prove an alternative
version of the induction principle.

Proposition (decomposition induction)
For each sentence F[z], the universal closure of the sentence
Flo]
if and

(V positive z) [if Flz - 1]]

then Flz]

then (V integer x)F|x] (decomposition induction)

is valid.
is valid. |

The decomposition version of the induction principle may be paraphrased
informally as follows:

To show that a sentence Flz] is true for every nonnegative
integer x (under a given interpretation), it suffices to show the
base case
F[0] is true
and the inductive step
for an arbitrary positive integer z,
if [z — 1] is true
then F|z] is also true.

The only difference between the decomposition version of the induction prin-
ciple and the original version is that in the decomposition version we infer F[z]
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from F[z — 1}, where z is positive, while in the original version we infer F[z 4 |
from F|z], where z is nonnegative. 13

The proof of the decomposition-induction proposition is requested in Prol,.
lem 8.15. (This problem, like Problem 8.13 and 8.14, is placed at the end becauge
of its theoretical nature.) :

Because the decomposition induction principle is valid in the theory of the 3
nonnegative integers, we can use either the original or the decomposition versiop
of the induction principle in establishing the validity of a sentence in the theory
Which version is more convenient to use in a proof depends on how we choose t(;
formulate our axioms and properties. If these tend to refer to the successor  + ]
the original version will be more convenient; if they refer to the predecessor z — |
the decomposition version will be more convenient. In this book we typically use
the successor function; therefore the original version is usually easier to use.

8.5 THE LESS-THAN RELATION

In this section, we introduce two versions of the less-than relation, which turn out
to be weak and strict partial relations, respectively.

THE WEAK LESS-THAN RELATION

Suppose we augment our theory further by formulating two axioms that define
a binary predicate symbol z < ¥, denoting the weak less-than relation under the
intended model for the nonnegative integers.

The axioms for the weak less-than relation are as follows:

<0
(V integer ) | = (right zero)
z=0
z<y+1
(V integer =, y) | = (right successor)
r=y+1 or <y

Example (computation of <).  Let us use the axioms to compute the truth-
value of 0 < 1, that is, 0 <0+ 1. We have

0<0+1



8.5 THE LESS-THAN RELATION 403

if and only if (by the right-successor axiom)
0=04+1 or 050

if and only if (because, by the zero uniqueness axiom, not (0 =0+ 1))
0<0

| if and only if (by the right-zero axiom)

0=0, '

which is true.

wl

In Problem 8.7, we request the reader to prove the following basic property
of the weak less-than relation:
Ty
(V integer z,y) | = (left addition)
(3 integer z)[z + 2z = y)

The weak less-than relation we have defined can be shown to be a weak
partial ordering; in other words, we can establish the validity in the theory of the
nonnegative integers of the three weak partial-ordering axioms for <:

: ] < <
(V integer z, y, 2) [gzei o y( gnd = z] (transitivity)
. ] < <
'V integer x, y) [:);L eﬁ & 3_’__ ;nd e I] (antisymmetry)
(V integer z)[z < x] (reflezivity)

We can also establish the following properties of the weak less-than relation:

(V integer z)[0 < z) (left zero)
(V integer =, y)[z <z + y] (right addition)
(V integer z, y) [:1: <y or y< :r:] (totality)

The predicate symbol > denotes the weak greater-than relation, which is the
inverse of the weak less-than relation <. It is defined by the following axiom:

(V integer x, y) [zt >y = y < 1] (weak greater-than)

EXPRESSING PROPERTIES OF FUNCTIONS

We can now express the properties of several other functions in terms of the weak
less-than relation. For the subtraction function, we can establish the following
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properties:

(V integer z, y)

(V integer z, y)
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(V integer z, y, z)

[if z<y
then integer(y — ) (sort)
if z <
f sy . (decompositz'on)
then =+ (y —z) = y
[if <y ]
rT+z=y ;
ol _ (cancellation)
z=y—=x

We can augment our theory further by introducing two binary function syn,.
bols maz(z, y) and min(z, y), denoting the mazimum and minimum, respectively,

of the nonnegative integers

z and y. The axioms that define these functions are

as follows:
- —
if z<y
(V integer x, y) [maz(z, y) = < then y (mazimum)
I else x
if z<y
(V integer z, y) | min(zx, y) = { then (minimum)
else y

From these axioms we can establish the following properties of the maximum and

minimum functions:

(V integer z, y)

(V integer x, y)

(V integer x, y,

(V integer xz, vy,

(maz(z, y) >z
and
| maz(z, y) >y

(greater-than)

[min(z, y) <z

and (less-than)
| min(z, y) <y
—min(x, maz(y, z))
z) = (minimaz)
| maz (min(z, y), min(z, 2))
[maz (z, min(y, 2))
2) | = (mazimin)
Lmz’n(ma:z:(:c, y), maz(z, 2))
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The reader is requested to establish the greater-than and minimaz properties
in Problem 8.8.

THE STRICT LESS-THAN RELATION

We have already remarked that the weak less-than relation < is a weak partial
ordering. Let us augment the theory further to define a new binary predicate
symbol <, denoting the (strict) less-than relation, by the following axiom:

r<y

(V integer z, y) = (less-than)
z <y and not (z =y)

In other words, < denotes the irreflexive restriction of the weak less-than rela-
tion <. Thus we know (by the irreflerive-restriction proposition of the theory of
the weak partial ordering <) that < is a strict partial ordering in the augmented
theory of the nonnegative integers; i.e., the sentences

(V integer x, y, 2) [2; 5 ;y< and i < Z] (transitivity)
en z
(V integer x) [not (z < )] (irreflexivity)

are valid. Therefore any property we can prove in the theory of the strict partial
ordering < is valid in our augmented theory of the nonnegative integers. For
example, the asymmetry property

) <
yoz<y ] (asymmetry)

(V' integer @, y) [then not (y < x)

1s valid.

We have defined the strict less-than predicate symbol < to denote the ir-
reflexive restriction of the weak less-than relation <. We can also show that the
weak less-than predicate symbol < denotes the reflexive closure of <, that is,

&<y

(¥ integer z, y) = (reflexive closure)
<y or T=Y

The less-than relation < can be shown to be total, that is,
(V integer x, y) [1: <y or y<z or r= y] (totality)
It follows (because < is asymmetric and < is its reflexive closure) that

not (z < y)

(V integer x, y) = (total asymmetry)
ysz
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The predicate symbol >, denoting the corresponding (strict) greater_tha';,
relation, is defined by the axiom 3

(V integer x, y) [z >y = y <1 (greater—than)j
We can also establish the following properties of the strict less-than relatioy. i'

<y

(V integer x,y) | = (left addition)
(3 positive z)[z + 2z = y]

(V positive ) [0 < z] (left zero)
(V integer x) [not (x < 0)] (right zero)
(V integer z)[z <z + 1] (adjacent)
(V integer )(V positive y) [z<z+ y] (right addition)

r<y+1

(V integer x,y) | = (right successor)
TSy
<y

(V integer z,y) | = (left successor)
z+1<y

In Problem 8.16, the reader is asked to consider a version of the theory of
the nonnegative integers without the induction principle. (Again, this problem is
placed at the end of the list because of its theoretical nature. )

8.6 THE COMPLETE INDUCTION PRINCIPLE

Using the less-than relation <, we can state and prove an alternative version of
the induction principle, which is often much more convenient to use.

Proposition (complete induction)

For each sentence F|z], the universal closure of the sentence
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) if (V integer ') [;{zez ;[':;,]]
then Flx]

then (V integer z)F|(z|

if (V integer x

(complete induction)

where z’ does not occur free in F|z], is valid. 3

As usual, the sentence F[z] is called the inductive sentence and the variable
z is called the inductive variable. The antecedent of the principle,

. . i &<
(V integer x) o7 v nieer & [then .75'[.7:’]]

then Flz]
is called the inductive step; the subsentences
if 2 <z
then Flz']

of the inductive step are called the induction hypothesis and the desired conclusion,
respectively.

bl

(V integer a:’)[ ] and  Fla]

The complete induction principle may be paraphrased informally as follows:

To show that a sentence F[z] is true for every nonnegative
integer = (under a given interpretation), it suffices to show the
inductive step

for an arbitrary nonnegative integer x,
if Fz'] is true for every nonnegative integer z’
such that z’ < x,
then F|[z] is also true.

In other words, to show that a sentence F[z] is true for every nonnegative integer
z, it suffices to show that, for an arbitrary nonnegative integer z, if

Flol, F@l, F2, ..., and Flz-1)
are all true, then
Flz]
is also true.
The reader may have wondered why we include in the complete induction

principle the constraint that =’ does not occur free in F[z]. In fact, if this con-
straint is violated, the sentence may not be valid.

Counterexample (constraint is essential). In the theory of the nonnega-
tive integers, take

Flx]: v <2,
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Note that, contrary to the constraint, z’ occurs free in F[z).

The complete induction principle in this case is

if (V integer 1) if (V integer z') [
then z < '

| then (V integer z)[z < 2’|

then z’ < ¢!

if @<z ]
(V integer ')

(The outermost quantifier (V integer z') was introduced in taking the univfw,r;ai
closure.)

The subsentence
if ¢ <z
then z' <z’

is equivalent (by properties of the nonnegative integers and propositional logic)
to

not (' < x).
Let us make this replacement in the principle. The resulting subsentence
(V integer x')[not (z' < z)]
is equivalent (by properties of the nonnegative integers) to
x = 0.

Let us make this replacement. The resulting subsentence

. if z=0
VY integer T
( ger &} Lhen T < :1:’]

is equivalent (by predicate logic) to
4 < 2's
Let us make this replacement. The resulting sentence is

if 0<a
V int p
i ALEET [then (V integer z)[z < :1:']}

If we take ' to be 1 and z to be 2, we have
if 0<1
then 2 <1,

which is false. 3

To distinguish between the induction principles, we refer to the earlier in-
duction, including decomposition induction, as stepwise induction.

Let us postpone the proof of the complete induction principle until we have
had a chance to illustrate its application.
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8.7 QUOTIENT AND REMAINDER

Suppose we augment our theory by defining two binary function symbols, quot(z,y)
and rem(z, y). Under the intended model for the nonnegative integers, these sym-
bols denote the quotient and remainder, respectively, of dividing a nonnegative
integer x by a positive integer y. The axioms for the quotient of dividing = by y
are

(V integer x) [if & LY ] (less-than)

(V positive y) |then quot(z, y) =20

(V integer x)

(V positive y)[q“"t(x +y,y) = quot(z, y) +1] (addition)

The axioms for the remainder of dividing = by y are

(V integer x) {if <y }

(V positive y) |then rem(z, y) =< (less-than)

(V integer x)

(¥ positive y) [rem(:n +y, y) = rem(z, y)] (addition)

Note that the axioms for the quotient and remainder do not specify the

values of terms of form quot(s, 0) or rem(s, 0), although such terms are legal in
the language.

From these axioms, we can establish the usual sort properties for the quotient
function,

(V integer x)

( gigstie ) [integer (quot(z, y))] (sort)

and for the remainder function,

(V integer x)

(V positive y) [integer (rem(z, y))] (sort)

The reader is requested to prove these properties in Problem 8.9(a)(b).

The following proposition expresses a relationship between the quotient and
remainder functions.
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Proposition (quotient-remainder)
The sentence
T = y-quot(x, y) + rem(z, y)
and
rem(z, y) <y

(V integer x)
(V¥ positive y)

(quotient-remainder)

1s valid. 3

The proof illustrates the use of the complete induction principle.

Proof. @ We actually prove the equivalent sentence
= y - quot(z, y) + rem(x, y)
and

rem(z, y) <y

(obtained by reversing the quantifiers).

(V positive y)
(V integer x)

Consider an arbitrary positive integer y. We would like to show that

x = y-quot(zx, y) + rem(x, y)
(V integer x) and

rem(z, y) <y '
The proof is by complete induction on z; we take the inductive sentence to be
r = y-quot(x, y) + rem(z, y)
FElx] : and
rem(z, y) < y.
To prove (V integer z)F|[z], it suffices to establish the inductive step.
Inductive Step

We would like to show

. . nlif T <x
if (V integer x') {then .’F[a:"]}
then Fz]

For an arbitrary nonnegative integer x, we assume the induction hypothesis
: !
(V integer z') [zf o ]

(V integer x)

then Flz']
and attempt to show the desired conclusion
Flz],
that is,
z = y-quot(z, y) + rem(z, y)
and
rem(z, y) < y.

Following the way the quotient and remainder are defined, we distinguish
between two subcases, depending on whether or not z < y.
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Case: <y

Then (by the less-than axioms for the quotient and remainder, because y is
positive) we have
quot(z, y) =0 and rem(z, y)==z.
The desired conclusion F[z] then reduces to
z=y-0+cz
and
<y

The first conjunct follows from the right-zero axiom for multiplication and the

left-zero property of addition; the second conjunct is the assumption for this
subcase.

Case: not (z < y)

Then (by the total-asymmetry property of the less-than relation <)
y<z
and hence (by the decomposition property of the weak less-than relation <)
y+(@z-y) = g,
that is (by the commutativity property of addition),
zr = (x—y)+y.

Hence (by the addition axioms for the quotient and remainder, because y is pos-
itive) we have

quot(z, y) = quot((z—y)+y, y) = quot(z—y, y)+1
and

rem(z, y) = rem((z —y)+y, y) = rem(z—vy, y).

We would like to show F|[z], that is,

T = y-quot(z, y) + rem(x, y)
and

rem(z, y) <y,
which expands (in this case) to

z =y (quot(z —y, y) +1) +rem(z -y, y)
and

rem(r —y, y) < y.
‘This can be transformed (by the right-successor axiom for multiplication) into

= (y-quot(zx —y, y) +y) +rem(z —y, y)
and

rem(z —y, y) < y.
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This can be transformed further (by the commutativity and associativity Proper
ties of addition) into

z = (y-quot(z—y, y)+rem(z—y, y)) +y
and

rem(z —y, y) <y.

Therefore (by the cancellation property of subtraction, because, in this cage
y < z) it suffices to establish ’

z—y = y-quot(z—y, y)+rem(z—y, y)
and

rem(z —y, y) <Y,
which is precisely Flz — y].

We have assumed as our induction hypothesis that

. | & =
(V integer x") [then f{:c’]].

In particular, taking z’ to be = — y, we have
if t—y<zx
then Flr —y).

Because (z — y) +y = z and y is positive, it follows (by the left-addition
property of the less-than relation <) that

L = 1) % Ty
and thus we have the desired result Flz — y].

Because we have completed the proof of the inductive step, we have estab-

lished the quotient-remainder proposition. P

Remark (why not stepwise induction?).  Note that the above proposition
would be awkward to prove by stepwise induction rather than complete induction.
In the inductive step we showed that, to prove our desired conclusion Flz), it
suffices (in the case in which not (z < y)) to establish the condition

Flz —yl.
This turned out to be implied by our induction hypothesis

. nif 2 <z
(V integer z') [ then }'[a:']]

taking =’ to be x — y, since in this case T —y < z.

Had we attempted the proof by the (decomposition version of) stepwise in-
duction, our induction hypothesis would have been simply

Flz —1].
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This does not necessarily imply F [z —y], because we do not know that y = 1. The
induction hypothesis of the complete-induction proof tells us not only F [z — 1]
but the entire conjunction of

Flol, Fl, ..., Flz—2], and Flz-1].

(A similar obstacle would have been encountered had we attempted the proof by

the original version of stepwise induction.) 3

Remark (where is the base case?). The reader may be puzzled to note
that, although the earlier stepwise induction principle requires us to prove a base
case and an inductive step, the complete induction principle requires only an
inductive step. At first glance, it may seem as if we are getting something for
nothing in using complete induction.

This appearance is misleading: In proving the inductive step for complete
induction,

if o' <z
(V integer )

if (V integer z') [then Fl'
then Flz]

we must actually consider the possibility that the arbitrary nonnegative integer
r is 0. In this case our induction hypothesis is

if o' <0

then Flz'l|

Because (by the right-zero property for the less-than relation <) there are no
nonnegative integers z’ such that r’ < 0, we can never make use of the induction
hypothesis in this case. Therefore we must prove the desired conclusion F[z],
that is, F[0], without the help of the induction hypothesis, just as in the base
case of a stepwise induction proof.

H

(V integer z') [

In the quotient-remainder proposition above, for instance, we treated sepa-
rately the case in which z <y. Because we have taken y to be positive, this case
includes the possibility that = 0. The case was handled without appealing to

the induction hypothesis. P

The proposition we have just established states that, for any nonnegative in-
teger « and positive integer y, the quotient quot(x,y) and the remainder rem(z, Y)
exhibit the quotient-remainder relationship

xr = y-quot(zr, y) + rem(z, y)
and
rem(z, y) < Y-

It can actually be shown that quot(z, y) and rem(z, y) are unique, in the sense
that, for all nonnegative integers u and v satisfying the quotient-remainder rela-
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tionship
T =y -ut+v
and
v <y,

we have
u = quot(z, y) and v=rem(z,y).
The proof is requested in Problem 8.9(c).

Remark (program correctness). The axioms for the quotient and remgjp.
der functions suggest a method for computing these functions. In other wor

these axioms have computational content; we may regard them as a program for
computing the quotient and remainder. :

It is not immediately obvious that the functions defined by these axioms are
actually the quotient and remainder functions we expect. We might have mada
an error in the axioms and thus defined some other functions.

The quotient-remainder property is a description of the intended behavior
of the quotient and remainder functions. In this sense, it may be regarded ag
a specification for the program that computes these functions. In proving the
property, we establish the correctness of the program at least with respect to
this specification. In other words, we can be more confident that the program
computes the functions we expect.

8.8 PROOF OF COMPLETE INDUCTION

We are now ready to give the proof of the complete induction principle.

Proof (complete induction).  For an arbitrary sentence F [z], suppose that

——
(%) (V integer x) i (¥ inkeger @) [:{zeﬁ ;[f:’]]
then Flz]
is true, where z’ is not free in F[z]; we would like to show that then
(1) (V integer z)F|[z]
is true.

We actually prove an alternative property

(1) (V integer y)F'[y],
where F'[y] is

F'lyl - (VY integer z') [:{zei ;[Z'I]
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y is a new variable. Intuitively speaking, F'[y] is the conjunction of
Fo), F[l, F2), ..., and Fly-— 1].

. proof that () = (1)

To show that the alternative property (f), that is, (V integer y)F'[y], implies
the original property (1), that is, (V integer x)F|[z], suppose that

(V integer y)F'[y],

and consider an arbitrary nonnegative integer x; we attempt to show that
Fz]

is true.

From the supposition (taking y to be x + 1) we have F'|z + 1], that is,
if £’ <z+1
V int 4
(¥ fntcger =) [then Flz') ]
In particular, taking z’ to be z, we have (because z' is not free in F[z])

if t<z+1
then Flz].

By the adjacent property of the less-than relation <, we know z < x+1. Therefore
we conclude

Flz),

as we wanted to show.

Proof that (*) = (1)
The proof of (1),
(V integer y)F'[y],

is by the stepwise induction principle; we take the inductive sentence to be F'[y].

Base Case

We would like to show F'[0], that is,
. if ' <0
V int !
(¥ integer z') \:then .7-"[:1:’]]

But, for an arbitrary nonnegative integer z’, we have (by the right-zero property
of the less-than relation <)
not (z' < 0).

Therefore the entire implication is true.
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Inductive Step

For an arbitrary nonnegative integer y, we assume the induction hYPOthes“"
(for the stepwise induction principle) 3

: if @' <y
F'lyl:  (V integer z’
[yl (¥ integer 2/ Lhen F[x,]}
and establish the desired conclusion (for the stepwise induction principle)

if I’<y+1]

F 1] : YV int f
lv+1] ¥ dnteger i) Lhen Fli']

Consider an arbitrary nonnegative integer z’ such that

r <y+1;

we would like to show that
Elw".

Since ' < y+1, we have (by the right-successor property of the less-than relation

<) that =’ <y or, equivalently (because < is the reflexive closure of <),
<y or ' =y.

We treat each subcase separately.

Case: ' <y
By our induction hypothesis F'[y], we have
if ' <y
then F[z'].
Therefore, because (in this case) =’ < y, we obtain the desired result
Fla'l,

Case: ' =y

In this case we would like to show F[y]. From our initial supposition (¥)
(taking x to be y) we have

_ _ N 2 <y
if (V integer ') then }_[mll]
then Flyl.

Therefore it suffices to show

. N | 2 <y
(V integer z') [then .7-"[:1:’]]‘

1

but this is precisely our induction hypothesis F'[y].

Because we have completed the base case and the inductive step of the step-
wise induction proof, we have established the validity of the complete induction
principle. 3
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As the proof of the above proposition illustrates, any sentence we can prove
by complete induction we can also prove by stepwise induction, but the stepwise-
induction proof may require a more complex inductive sentence.

In Problem 8.10, the reader is requested to prove the guotient-remainder
proposition by stepwise induction, without using complete induction.

Some further applications of the complete induction principle are illustrated
in the next section.

8.9 THE DIVIDES RELATION

In this section we introduce a new relation over the nonnegative integers and
further illustrate the usefulness of the complete induction principle.

DIVIDES

Suppose we augment our theory by defining a new predicate symbol T =<4y ¥,
denoting the divides relation, which holds when z divides y with no remainder.
(The conventional symbol for this relation is z[y.)

The axiom for the divides relation is

T 2div Y
(V integer z,y) | = (divides)
(3 integer 2)[z - 2 = y]

Thus,
1 <div 6 2 =4iv 6 3 =div 6 6 <qiv 6 6 <div 0,
but not 0 <4, 6.

From this axiom we can establish the validity of the following properties of
the divides relation:

(V integer x) [:c = i 0] (right zero)
(V positive y) [not (0 <4iv ¥)] (left zero)

T jdiv Yy and x jdiv Z
p- (V integer z, y, 2) | = (addition)
on T Zgiv Yy and T Xgiv (¥ + 2)
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2) i TRdivy or £ <4y 2

i o

(VY integer x, y, fhen & La (§102) (multzplzcatwn) 1
e

(V positive x) ‘ —div Y .

(V integer y) | (remamder)

remt(y; ) == 10

We can also show that the divides relation is a weak partial ordering; in othep
words, we can establish the validity in the theory of the nonnegative integers of
the three weak-partial-ordering axioms for the divides relation, that is,

. f T=Zaivy and y <4y 2 _
Y wnteger x, y, z - t Vi
( g : T 2) [then — ( ransitivity)
. if 224wy and y <4y x _
(V integer z, y) [then . : y R (antisymmetry)
(V integer z) [:c L i m] (reflezivity)

Note that we cannot establish the totality property for the divides relation; that
is, the sentence

(¥ integer x, y) [z <aiv y or Y =giv 1]
is not valid. For instance, neither 2 <4;, 3 nor 3 <y, 2 is true.

Note that the definition of the divides relation does not immediately suggest
a method of computing the relation, i.e., of determining whether s <, t for
terms s and ¢ denoting particular nonnegative integers. For this purpose it is
necessary (according to the definition) to decide whether

(3 integer z)[s -z =t].

But since there are infinitely many nonnegative integers z to be tested, this is
impossible.

There are other properties of the divides relation that do suggest methods to

compute it. For example, we can establish the validity of the following properties:

(V integer x) [if =z >y

(V positive y) |then not (x =gy y) (greater-than)

if <y

T Xdiv ¥
then =
T Sdiv (y - "L')

(V integer x, y) (subtraction)

These two properties, together with the right-zero and left-zero properties above,
suggest a method for computing the divides relation.
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g Example (computation of =y,). Suppose we would like to determine
whether 2 divides 4. We have

2 Rdiv 4

if and only if (by the subtraction property, because 2 < 4)
2 Zaiv (4—2)

if and only if

2 Zaiv 2

if and only if (by the subtraction property, because 2 < 2)
2 <aiv (2-2) |

if and only if

2 <aiv 0,

which is true (by the right-zero property). Note that we could have used the
reflezivity property to determine that 2 <agiv 2 is true, obtaining a shorter com-

putation.
On the other hand, suppose we would like to determine whether 2 divides 3.
We have
2 Xdiv 3
if and only if (by the subtraction property, because 2 < 3)
2 Raiv (3—2)
if and only if
2 Rdiv 1,

which is false (by the greater-than property, because 2 > 1 and 1 is positive). r

In Problem 8.11, the reader is requested to show the validity of the right-
zero, left-zero, greater-than, and subtraction properties of the divides relation and
to show that these properties in fact constitute an alternative definition for the

relation.

The proper-divides relation, denoted by <4iv, is the irreflexive restriction of
< div, defined by the axiom

T <div Y
(V integer z, y) | = (proper divides)
T <giv y and not (z =Yy)

Because we have established that =<g;, is a weak partial ordering, we know
immediately (by the irreflezive-restriction proposition of the theory of the weak
partial ordering <g4i,,) that its irreflexive restriction <4, is a strict partial order-
ing, i.e., it is transitive and irreflexive.
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The proper-divides relation <4;, may also be shown to satisfy the foqu{
property ;
T <div Y

3 int T-2=y and
(3 integer z) L<Z

(V¥ positive z, y) ( multz'plz'cation)‘5

GREATEST COMMON DIVISOR

Let us further augment our system by defining a binary function symbol ged(x, y)
intended to denote the greatest common divisor of z and y. The axioms for thqé
greatest-common-divisor function are

(V integer x)[ged(z, 0) = z] (zero)

(V integer x)

(V positive y) [QCd(I’ y) = ged(y, rem(z, y))] (remainder)

—

We illustrate the use of the axioms to compute the greatest common divisor
of two particular nonnegative integers.

Example (computation of gcd).  Suppose we would like to determine the
greatest common divisor of 6 and 9, assuming we can compute the remainder
function rem. We have

ged(6, 9) = gcd(9, rem(6,9))

(by the remainder axiom, because 9 is positive)
= gcd(9, 6)

= gcd(6, rem(9,6))
(by the remainder axiom, because 6 is positive)

= ged(6, 3)

= gcd(3, rem(6,3))
(by the remainder axiom, because 3 is positive)

= ged(3, 0)

= 3
(by the zero axiom).
In short,

ged(6, 9) = 3.
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Remark (consistency). As usual when we introduce new axioms, we run
the risk of making the theory inconsistent. Here the risk is greater than usual,
because these axioms do not fit the same form as our previous recursive defini-
tions. Typically, in defining a function f, we have used a successor axiom, which
expresses the value of f(z, y + 1) in terms of the value of f(x, y). Here the
remainder axiom expresses the value of ged(z, y), for positive y, in terms of the
value of ged(y, rem(z, y)). The augmented theory is in fact consistent, as can be
shown by exhibiting the model under which gcd is assigned the greatest common
divisor function.

ol

It may not be clear at this point why the function defined by these axioms is
called the “greatest common divisor.” The following proposition establishes that
gcd(z, y) is a “common divisor” of z and y; later we shall observe that it is indeed
the “greatest” of the common divisors.

Proposition (common divisor)
The sentence

ged(z, y) Rdiv T
(V integer x, y) and (common divisor)

ged(z, y) Zdiv Y

is valid. 3

In other words, gcd(z, y) divides both z and y.

Proof. We actually prove (rearranging the quantifiers) the equivalent sentence

ng(.’L’, y) div T
(V integer y, x) and

ged(z, y) Z2div Y
The proof is by complete induction on y, taking the inductive sentence to be

ng(J?, y) =div
Fly]: (Y integer x) and

ng(-Ta Y) Rdiv Y ‘
To prove (V integer y)F[y], it suffices to establish the inductive step.

Inductive Step
We would like to show

if (V integer y') [
then Fly)

if Y <y
(V integer y)

then Fly')
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For an arbitrary nonnegative integer y, we assume the induction hyp(‘thea"}
; if ¥<y
Y integer vy’
( ger v') [then F [y’]]
and attempt to show the desired conclusion

Flyl,
that is,

ged(z, y) Rdiv ©
(VY integer x) and

ged(z, y) Raiv Y]

Consider an arbitrary nonnegative integer z; we would like to show that

ged(z, y) Rdiv T
and

ng(:L‘, y) =div Y-

Following the axioms for the ged function, we distinguish between two subcases,
depending on whether or not y = 0.

Case: y=0
Then (by the zero axiom for the gcd) we have
ged(z, y) = =.
The statement we would like to show then reduces to
T Zdiv T and T Xgiy 0.

The first conjunct follows from the reflezivity property of the divides relation, and ||
the second from the right-zero property.

Case: not (y = 0)
In other words, y is positive. Then (by the remainder axiom for ged)
ged(z, y) = ged(y, rem(z, y)).
We would like to show

ged(z, y) Rdiv T
and

ged(z, y) Zaiv Y5
which (in this case) may be expanded to
ged(y, rem(z,y)) Sdiv T
and
gcd(y, rem(x, y)) < div Y-
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We know (by the guotient-remainder proposition, because y is positive) that
r = y-quot(z, y) + rem(z, y).
Therefore the statement we would like to show may be expanded further, to
ged(y, rem(z, y)) Rdiv Y- quot(z, y) + rem(z, y)
and
gcd(y, rem(x, y)) <div ¥-
Thus (by the addition property of the divides relation) it suffices to establish

ng(ya Tem(m= y)) div Y ° QU'Ot(:E: y)
and
ged(y, rem(z, y)) Raiv rem(z, y)
and
ged(y, rem(z, y)) Zdiv -
Hence (by the multiplication property of the divides relation) it suffices to establish

ged(y, rem(z, y)) Zdiv ¥

or
ged(y, rem(z, y)) Zdiv quot(z,y)
and
ged(y, rem(z, y)) 2div rem(z, y)
and

gcd(y, rem(z, y)) Zaiv ¥,
which is equivalent (by propositional logic) to

ng(ya Tem(ma y)) =div ()
(%) and
gcd(y, rem(zx, y)) =<div Tem(x, y)-

We have assumed as our induction hypothesis that
. if ¥ <y
Y integer y'
( ger v/ [then F [y’]]
In particular (taking y’ to be rem(zx, y)), we have

if rem(z,y) <y
then F(rem(z, y)].

Since (by the quotient-remainder proposition, because y is positive in this
case)

rem(z, y) < ¥,




