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we have Flrem(z, y)], that is,

ged(z', rem(z, y)) Zaiv 7'
(V integer ') | and

ged(z', rem(z, y)) =aiv rem(z, y)

(Note that we have renamed the bound variable z of the induction hypothesis
z', to avoid capturing the free occurrence of z in rem(z, y).) In particular (

; : taking -
z' to be y), we obtain :

ng(ys rem(:c, y)) div ¥
and

gcd(y, rem(z, y)) =div TeM(z, y),

which is the statement (*) we were trying to establish.

Because we have established the desired result in both cases, we have con.
pleted the proof.

Note that the proof of the inductive step for the case in which ¥y = 0 was
completed without appealing to the induction hypothesis. This corresponds to
the base case in a stepwise induction proof.

Remark (why not stepwise induction?).  The above proof would be awk-
ward to carry out by stepwise induction rather than complete induction. In the
inductive step we attempted to prove our desired conclusion F[y], which is of the

form
(V integer z)G[z, yl,
where

ged(z, y) Zaiv T
Glz, y] : and
ged(z, y) Rdiv Y-
For an arbitrary nonnegative integer z, we found (in the case in which not (y = 0))
that to establish G|z, y] it suffices to establish the corresponding condition (x),

Gly, rem(z, y)].

We were then able to apply our induction hypothesis,

if ¥ <y

3 !
¥ dnteger ¥) | fon (v svidager z)G[z, y']

1

to establish (renaming z to =’ and taking ¥’ to be rem(z, y), since rem(z, y) < y)
that

(V integer z')G[z', rem(z, y)].
This gives the desired condition (x), taking z’ to be y.
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Had we attempted the proof by the (decomposition version of) stepwise in-
duction on y, our induction hypothesis would have been simply
(V integer z)G[z, y — 1].

This does not necessarily give us the condition (x), that is, Gy, rem(z, y)}, be-
cause rem(z, y) can be any nonnegative integer less than y. A successful stepwise-
induction proof (whether by the decomposition version or the original version)

requires a more complex inductive sentence. P

The proof of the common-divisor proposition illustrates some of the strategic
aspects of performing a proof by induction.

Remark (generalization). The proof of the common-divisor proposition
did not require us to generalize the sentence to be proved, but it can be used to
illustrate the need for generalization. Suppose, instead of being given the sentence

ng(I, y) Rdiv T
(V integer z, y) and

ged(z, y) Zdiv Y
to prove, we had been given only the left conjunct,
(V integer x, y) [gcd(r, Y) <div J:]
Although this is a weaker sentence, we would not be able to establish it by imi-
tating the above proof. We can see this as follows:
Suppose we reverse the quantifiers and attempt to prove

(Y integer y, z) [ged(z, y) Zaiv x]

by complete induction on y, taking the inductive sentence to be
Flyl: (¥ integer x)[ged(z, y) <aiv z].

The desired conclusion of the inductive step would also be

(V integer x)[ged(x, y) Zaiv :r]

For an arbitrary nonnegative integer z, we would succeed in showing (in the

case in which not (y = 0)) that, to establish the subsentence

ng(.’L‘, y) =div T,
it suffices to establish the sentence (*),

ged(y, rem(z, y)) Sdiv Y

and

ged(y, rem(z, y)) Saiw rem(z, y),

as in our original proof.

However, because we are attempting to show a weaker sentence, our induction
hypothesis is the correspondingly weaker sentence

. n[i v <y
(V integer y') [then (V integer z)[ged(z, ¥') Raiv I]]
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Our weaker induction hypothesis would allow us to show (taking y' to be rem(z 4
? y) E
and z to be y, because rem(z, y) < y) that

ng(y1 rem(m, y)) =div Y

which is the first conjunct of the sentence (x) we need to establish. We could noy
easily show the second conjunct, that 1

ged(y, rem(z,y)) Saiv TemUT, Y)-

In fact, if initially we were only given the single condition

(v integer @, y)[ged(w, y) Sdiv <]
to prove, we would have had to discover the second condition ourselves and prove
the more general, stronger statement consisting of the conjunction of the two
conditions together, as we did in the proposition. This generalization process

may require some ingenuity. 5

The proposition we have just established states that, for all nonnegative
integers = and y, the nonnegative integer gcd(z, y) is indeed a common divisor of
z and v, i.e., it exhibits the common-divisor relationship

ng(IE, y) jdiv iy and ng(:E, y) jdifu Y.

It can also be shown that ged(z, y) is the “greatest” common divisor of z
and y, where “greatest”” means greatest with respect to the divides relation =<g;,.
In other words, for every nonnegative integer z, if z is a common divisor of z and
y, that is, if

z Zdiv T and z Zdiv Y5
then ged(z, y) is “greater” than z, that is,

z Zdiv 9ed(z, Y)-
In short,

if z=aivT ond z 3div y} (grentest)

Y int ’
(V integer x, Y, 2) [then z Zaiv gcd(T, Y)

The proof of this property is left as an exercise (Problem 8.12).

We have defined the greatest-common-divisor function ged(z, y) in terms of
the rather unnatural looking zero and remainder axioms; we can then establish
that ged(z, y) is indeed a greatest common divisor of z and y. In an alternative
augmentation of the theory, we can define the function by axioms that express the
desired property, that ged(z, y) is a greatest common divisor of z and y. In other
words, we take the common-divisor and greatest properties to be the axioms for
ged, and then prove the original zero and remainder axioms as properties. These
alternative axioms, however, do not suggest a method for computing the ged
function.
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8.10 THE LEAST-NUMBER PRINCIPLE

In this section, we establish a basic property of the nonnegative integers, which
turns out to be equivalent to the complete induction principle.

Proposition (least-number principle)
For each sentence G[z], the universal closure of the sentence

if (3 integer z)G[z]
Glal
and

_ = 1 o<
(V integer z') [then ot g[az’]]

(least number)

then (3 integer x)

where z' does not occur free in G[z], is valid. -

In other words, if a statement G[z] is true for some nonnegative integer x, there
must be a least nonnegative integer z’ for which it is true.

Proof.  Consider an arbitrary sentence G[z], where z’ is not free in G[z].

Recall that the complete induction principle asserted that, for each sentence
Fz], the universal closure of the sentence

: . if ' <z
o o integer ) |§ OF teer ) Lien .7-'[3:’]}
then F|z]
then (V integer z)F|x]
is valid, where z' is not free in F[z]. If we take F[z] to be not G[z], we obtain
. !
if (V integer x) if (V integer o) [;{1; :o:fg[m']]
then not Glz]
then (V integer x)[not G[z]].

Using the propositional-logic equivalence

if Hy _ ‘
[then il Hz] = not [H1 and Hz] '

we obtain the equivalent sentence

. nf <z |
(V integer z') [then ot g[:n’]]
and

Gla]

L i
then (Y integer z)[not Glz]].

if (Y integer =) not
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By the duality between the universal and existential quantifiers, this is equivalept
to

-

: if o' <z
(V integer z') [%f 5 ']
if not (3 integer x) and then not G[z']

|9 (=]

then not (3 integer x)G[z].

Because any sentence is equivalent to its contrapositive, that is,

if not Hy _ if Ho
then not Ho - then H,

1s valid in propositional logic, we obtain

if (3 integer z)G[x]

, ~ Vif &<k
(V integer z") [z ; i
then (3 integer x) then mot Gigi]

and
Glz]
or equivalently, reversing the conjuncts,
if (3 integer z)G[x]
Glz]
then (3 integer ) and
(V integer z') {

if ' <z
then not G[z']

This is precisely the least-number principle for the sentence G[z]. r

Note that the proof of the validity of the least-number principle required only
the complete induction principle and properties of propositional and predicate
logic; it made no mention of other properties of the less-than relation < or of the
nonnegative integers. One can actually establish that the least-number principle
and the complete induction principle are equivalent in predicate logic.

PROBLEMS

As usual, you may use in your proofs any property that is stated in the text
earlier than the page reference for the problem, even if that property is given
without proof; and you may use the results of any previous problem, even if you
haven’t solved that problem yourself.
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- Problem 8.1 (addition) page 384, 392

Establish the validity of the following sentences in the theory of the nonneg-
ative integers, augmented by the axioms for addition:

(a) Sort

(V integer x, y)[integer(z + y)]
(b) Associativily

(Y integer =, y, 2)[(z +y) +2 = =+ (y +2)]
(c) Left cancellation

[if z4+x=2+7Y]

(V integer z, y, z) e =7
(d) Right cancellation

(V integer z, y, 2) f zrz=y+2

| then z =y
(e) Annihilation |
| if z+y=0
(V integer z, y) [then z=0 agnd y= 0}

Problem 8.2 (multiplication) page 393

Establish the validity of the following sentences in the theory of the nonneg-
ative integers, augmented by the axioms for addition and multiplication:

(a) Sort

(V integer z, y) [integer(a: )]
(b) Right one

(V integer z)[z-1 = 4

Cw

(c) Left zero
(V integer )[0-z = 0]

(d) Left successor
(V integer x, y)[($+ 1)y = gy +y]

(e) Left one
xt (V integer n:)[l TR |
n
u (f)  Right distributivity

(V integer x, y, 2)[z- (y+2) = T y+z-2)
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(g) Associativity
(V integer z, y, 2)[(z-y) -z = z-(y- z)]

(h) Commutativity
(V integer z, y) [:L' Yy = y-z

(i) Left distributivity
| (V integer z, y, 2)[(z +y) -z = m-z+y-z].

Problem 8.3 (exponentiation) page 394
(a) Use the axioms for the exponentiation function to determine the value of 32

Establish the validity of the following sentences in the theory of the nonneg.
ative integers, augmented by the axioms for addition, multiplication, and expo-

nentiation:
(b) Sort
(V integer z, y) [integer(my)]

(c) FEzp one
(V integer z)[z! = z]

(d) Zero exp
. if not (y = 0)]
Y int
(v integer ) [then 0y =0
(e) One exp

(V integer y)[1¥ = 1]

(f) Ezp plus
(V integer z, y, 2) [:cy“ = ) s (:L"")]

(g) Ezp times
(V integer x, y, 2)[z¥* = (a¥)?]

Problem 8.4 (factorial) page 398

Suppose we augment our theory of the nonnegative integers by formulating
two axioms that define a unary function symbol z!, denoting the factorial function
under the intended model for the nonnegative integers. The axioms are

0 =1 (zero)

(V integer z)[(z+1)! = (z+1)- (z!)] (successor)
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For example,
3 =3-(2) = 3-2-(1) = 3-2:1-(0)) =3-2-1-1 = 6.

Let us introduce an alternative definition of the factorial function by formu-

Jating two additional axioms that define a binary function symbol fact2(x, y), as
follows:

(V integer y)[fact2(0, y) = ] (zero)

fact2(z + 1, y)

(V integer z,y) | = (successor)
fact2(z, (x +1) - y)
Prove that the sentence
(V integer ) [fact2(z, 1) = ! (alternative definition)

is valid.

Hint: Prove a more general property.

Problem 8.5 (predecessor and subtraction) page 399, 401

Establish the validity of the following sentences in the theory of the non-
negative integers augmented by the axioms for the addition, predecessor, and
subtraction functions and the positive relation:

(a) Decomposition
(V positive z)[z = (z7) +1]
(b) Right one
(V positive z)[z —1 = z7]
(c) Addition
(V integer 2, y)[(z+y) —y = z]
| (d) Negative
(V integer z, y)[z — (y+ ) = 0— y]_

Problem 8.6 (subtraction axiom) page 401
(a) Show that the sentence
F: (Y integer z,y, 2)[(z—y)+2z = (z+2) - y]
is not valid in the augmented theory of the nonnegative integers.

(b) If we add F to the theory as a new axiom, is the resulting theory consistent?
Justify your answer.
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Problem 8.7 (weak less-than) page 403

In the augmented theory of the nonnegative integers, establish the valjgjpy

of the left-addition property for the weak less-than relation, that is,
Ty

(V integer x, y) =
(3 integer 2)[z+ z = y]

Problem 8.8 (max and min) page 405

In the augmented theory of the nonnegative integers, establish the validity - i"
of the following properties of the maximum and minimum functions:

(a) Greater-than

maz(z, y) = &
(V integer z, y) | and
maz(z, y) >y

(b) Minimaz

mz’n(:z:, maz(y, Z))
(V integer z, y, 2) =
maz(mz’n(ﬂ?, y), min(z, Z)) ;

Problem 8.9 (quotient-remainder) page 409, 414

In the augmented theory of the nonnegative integers, establish the validity
of the following properties of the quotient and remainder functions:

(a) Sort (for quotient)

V int ,
N angeter 2 finteger (quot(a, v))]
(b) Sort (for remainder)

Y integer x) .
((V posz’fz’ve y% [mteger(rem(g;, y))]

(¢) Uniqueness

T=y-u+v u = quot(zx, y)
(V integer z, y, u, v) |if and then and
v<y v = rem(z, ¥)
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roblem 8.10 (quotient-remainder by stepwise induction) page 417

Prove the quotient-remainder proposition by stepwise induction, without us-
ing complete induction. More precisely, do the following:

% () Suggest an inductive sentence F for the stepwise induction proof.
(b) Give the stepwise induction proof of your inductive sentence.

(c) Use the validity of F to establish the quotient-remainder proposition.

Problem 8.11 (divides relation) page 419
In the theory of the nonnegative integers augmented by the definition of the
divides relation, establish the validity of the following sentences:
(a) Right zero
(V integer z)[z <4y 0]
(b) Left zero
(V positive y) [not (0 =&y y)]
(c) Greater than
(V integer x) [if 3¢ B ]
(V positive y) |then not (z <giv y)]
(d) Subtraction

if z<y 1
. £
Y integer x, T Zdiv Y
( ger z, ) then =
7 T Rdiv (¥ — )

Show also that these properties constitute an alternative definition for the
divides relation. In other words, in the theory of the nonnegative integers aug-
mented by the above four properties, establish the validity of the original defini-
tion of <g;y:

(e) Divides
T Rdiv Y
(VY integer z, y) =
(3 integer 2)[z - z = y]

Problem 8.12 (greatest common divisor) page 426

Establish that the greatest common divisor ged(z, y) is indeed the ‘greatest”
of the common divisors of = and y, with respect to the divides relation =giy; in

other words, in the augmented theory of the nonnegative integers, establish the
validity of the sentence

v int )if z Rgiv T and 2z Xdiv Y
(V integer &, ¥: 2) | hen » < div 9cd(Z, Y)
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Problem 8.13 (fallacious induction principle) page 379

One would expect that, for each sentence F [z] in the theory of the nonne ;
ative integers, the universal closure of the following sentence would be valiq:

F[0]
- and
d (Vv z'::te er y) i Fly]
I Y then Fly*]

then (V integer z)F|[z].

After all, the above sentence is obtained from the original induction principle

b
“renaming” the bound variable z of the inductive step to y. 3

In fact, if y occurs free in F[z], the sentence is not always true. Finq a
sentence F|z] in the theory for which the universal closure of the above implication :
i1s not valid.

%

Problem 8.14 (decomposition property) page 382 %
Consider a theory defined by the axioms of the unaugmented theory of the é,
nonnegative integers without the induction principle. Show that the decompo.
sition property is not valid in this theory. That is, present an interpretation
under which all the axioms (other than the induction principle) are true but the
decomposition property is false. ;

Problem 8.15 (decomposition induction principle) page 402

Establish the decomposition induction principle, that is, show that for each
sentence F[z], the universal closure of the sentence

F10]
if and _
(V positive ) [:{w:[:;__[;]ll]

then (V integer x)JF|x]
is valid.

Problem 8.16 (no induction principle) page 406

Consider a theory defined by the two generation axioms and the two unique-
ness axioms for the nonnegative integers and the two axioms for addition. Note
that this theory does not have an induction principle.

Show that the valid sentences of this theory are not the same as the valid
sentences of the augmented theory of the nonnegative integers, by exhibiting a
model Z for the six axioms of this theory such that the sentence

(V integer x, y)(3 integer z) [z+z=yory+z= x]

is false. Intuitively speaking, this sentence says that for all integers z and y, either
zT<yory<z.
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Deductive
Tableaux

We have introduced a deductive-tableau system to prove the validity of sen-
tences in predicate logic and in finite theories, with or without equality. In this

chapter, we adapt the system to prove validity in more complex theories, theories
with induction.

We have seen how we can add axioms as assertions into tableaux in predicate
logic (with or without equality) to establish the validity of sentences in particular
finite theories. The various forms of the principle of mathematical induction,
however, are all axiom schemata, each corresponding to an infinite set of axioms.
We have devised no method for dealing with axiom schemata within the tableau
framework. We cannot introduce an infinite set of assertions into a tableau.

Instead, for each theory, we represent the induction principle as a new deduction
rule.

11.1 NONNEGATIVE INTEGERS

We begin by reviewing a typical theory with stepwise induction, that of the
honnegative integers. In this theory, we shall use £, £, and m, with or without
subscripts, as additional constant symbols.

AXIOMS

The nonnegative integers have been defined by a set of generation and uniqueness
axioms and by the induction principle. Let us consider first the axioms.
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In the theory of nonnegative integers we have the generation axioms

integer(0) (zero)

(V integer z) [integer(z + 1)] (successor)

and the uniqueness axioms

T e Ry

(Vinteger z)[not (z +1 = 0)] (zero)

(successor)

|
A tableau over the nonnegative integers is a tableau with equality with the
zero and successor generation axioms and the zero and successor uniqueness
axloms as initial assertions.
The relativized-quantifier notation (Vinteger ...) requires special attention
here. Without using this notation, the successor generation axiom, for example,
1s actually

if 41 = y+1
then ¢ = y

(V integer z, y) [

if integer(x)
(Vz) .
then integer{x + 1)

Thus the corresponding assertion should be (applying outermost skolemization)

assertions goals

iof integer(x)
then integer(z + 1) (successor)

Similarly for the uniqueness axioms:

if integer(z)

then not (z +1=0) (zero)

if integer(x) and integer(y)

then of x+1=y+1 (successor)
then x=1y

The axioms that define new functions (e.g., multiplication) or new relations
(e.g., less than) are included as assertions, as before. Once we have proved a
property over the nonnegative integers, we may add it as an assertion to all
subsequent tableaux over the nonnegative integers.
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Because the tableau is with equality, we include the reflezivity axiom (z = x)
among our assertions, and we may also use the equality rule.

INDUCTION RULE

In addition to the generation and uniqueness axioms, the nonnegative integers
were also defined in terms of the (stepwise) induction principle:

For each sentence F[z] in the theory,
the universal closure of the sentence

F10]
if VC%TL:! if Flz] (induction)
(¥ integer ) Lhen Flz + l]j‘

then (Vinteger z)F|zx)

1s an axiom.

We would like to incorporate this axiom schema, which was used for informal
proofs, into our deductive-tableau framework as a deduction rule. We therefore
include in a tableau over the nonnegative integers a new deduction rule for math-
ematical induction. This induction rule allows us to establish a goal of form

(V integer z)F|z]

by proving the conjunction of a base case and an inductive step.

Rule (stepwise induction)
For a closed sentence

(V integer z)F|z],

we have

assertions goals

(V integer z)F[z]

F10]

if integer(m)
then if F[m]
then F[m + 1]

where m is a new constant. 3



538 THEORIES WITH INDUCTION: DEDUCTIVE TABLpp g

Here the conjunct
F10]
corresponds to the base case, and the conjunct
if integer(m)
then if F[m]
then Flm + 1]

corresponds to the inductive step of an informal stepwise-induction proof.

Remark (closed sentence).  We are permitted to apply the stepwise ndyc.
teon rule only if the goal is a closed sentence. Otherwise, if the goal

(VY integer z)F[x]
contains a free variable y, it actually stands for the existentially quantified goal
(3 y)(V integer x)F[z).

We cannot apply the induction principle to prove an existentially quantified sen-
tence. 3

We give an informal justification of the rule.

Justification (stepwise induction).  The induction rule preserves validity, not
equivalence. Let us show that, if the required goal

assertions goals

(V integer x)F|[z]

appears in the tableau, then we may add the generated rows without affecting
the validity of the tableau.

By the stepwise induction principle, we know that, to show the truth of a
closed sentence

(Vinteger z)F|x],
it suffices to establish the conjunction
Fl0]

and

(V integer z) [then Flz + 1]

(We need not consider the universal closure of the sentence since by our assump-
tion it contains no free variables.)

if Flz] ]

Thus (by the implied-row property) we may add to our tableau the new goal
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F(0]

and

of Flz
(V integer x) {f ] }

then Flz + 1]

L

that is,

0] N

if integer(x)
(V)Y |then if Flx]
then Flx + 1]

Because the quantifier (Vz) of this goal is of universal force, we may drop
the quantifier (by the V-elimination rule), replacing the variable z with the new
skolem constant m (because the goal has no free variables), to obtain

F10]

if integer(m)
then if F[m]
then Flm + 1]

This is precisely the goal derived by the rule. By the intermediate-tableau property

. (Section 5.1), we do not need to include the intermediate goal. r
a
EXAMPLES
We illustrate the proof of some properties in the theory of nonnegative inte-
gers. The reader may observe that there is a close correspondence between these
deductive-tableau proofs and informal proofs of the same properties in Section
8.2,
 Example (left-zero).  The addition function + is defined by the two axioms
(V integer z)|z +0 = ) (right zero)
mp-
| (V integer =, y) [z + (y+1) = (z+ y) + 1] (right successor)
god
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We would like to show that 0 is a left identity for addition, that is,

(V integer ) [O +z = :1:] (left 2er0)
We begin with the goal

assertions goals

Gl. (Vinteger z)[0+z = z]

in a tableau over the nonnegative integers.

The tableau contains among its assertions the generation and uniquenesg

axioms for the nonnegative integers, the reflezivity axiom for equality, and the
two axioms for addition,

if integer(x)
thenz+0 = x (1ight zero)

if integer(z) and integer(y)
thent+(y+1) = (z+y)+1 (right successor)

Applying the stepwise induction rule to goal G1, we obtain the goal

G2. [oxo=0]"

and

if integer(m)
then if 0+m = m
then 04+ (m+1) = m+1

The first conjunct corresponds to the base case and the second to the inductive
step of an informal stepwise-induction proof.

Recall the right-zero axiom for addition,

if integer(zx)
then|z+0 = z

By the resolution rule, applied to the axiom and goal G2, with {z « 0}, the first
conjunct of goal G2 may be dropped, leaving
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G3. | integer(0)

and

if integer(m)
then if 0+m = m
then 0+ (m+1) = m+1

Recall the zero generation axiom

integer(0)

By the resolution rule, applied to the axiom and goal G3, the first conjunct of
the goal may be dropped, leaving

G4. if integer(m)
then if 0+m = m
then 04+ (m+1) = m+1

We have thus proved the base case of the induction; it remains to show the
inductive step, i.e., goal G4.

By two applications of the if-split rulé, we may break down goal G4 into

A5. integer(m)

A6. 0+m =m

G7. |[0+(m+1)| =m+1

Assertion A6 corresponds to the induction hypothesis, and goal G7 to the desired
conclusion, of the inductive step of an informal induction proof. Assertion A5
corresponds to the phrase “Consider an arbitrary nonnegative integer m. ...”

Recall the right-successor axiom for addition,

if integer(x) and integer(y)
then [ r+(y+1)| = (;r+y)+1]

By the equality rule, with {z — 0, y « m}, we obtain
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)
G8. | integer(0) | and | integer(m) ¥

and
O0+m)+1 =m+1

Recall the zero generation axiom,

integer(0) | i\

and the assertion A5,

integer(m) - \l

By two applications of the resolution rule, to these assertions and the goal G8,
we obtain

G9. [0+m|+1=m+1 \

By the equality rule again, using the induction hypothesis (assertion A6),

[o5m) - o]

we may reduce goal G9 to

G10. |m+1 = m+1

Finally, by the reflexivity of equality, we obtain the goal

G11. true 4)

This completes the proof of the left-zero property
(V integer :1:)[0 +z = z|.
We may now include this property as an assertion in future tableaux over the
nonnegative integers.

. |

Note that the base case and the inductive step of an informal proof by in-
duction correspond to a single proof in the deductive-tableau system.
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Remark (beware of hasty skolemization). Ina pure predicate-logic tableau
proof, there is little harm in applying the skolemization rules to eliminate all quan-
tifiers, at least those of strict force. On the other hand, in a tableau proof over the
nonnegative integers, we must exercise some discretion in removing quantifiers.
If we remove the outermost universal quantifier (V integer =) of a goal, we cannot
apply induction on z to the resulting goal. 3
Remark (removal of sort conditions). Many of the steps in the above
proof had the effect of removing sort conditions, such as integer(0) or integer(m),
by resolution with an assertion. Removal of sort conditions is often a routine and
monotonous part of a proof; in such cases, we shall omit the details and justify
the step with the annotation “removal of sort conditions.”

Sometimes it is necessary to apply more than one resolution step to remove
a sort condition. For instance, to remove a sort condition integer(m + 1) in a
goal, we may apply the resolution rule to the successor generation axiom and the
goal, obtaining the new condition integer(m). The new condition can then be
removed by resolution with an assertion. In the following proof, one such step
will be spelled out in detail; subsequent steps of this kind will be omitted and
justified by the annotation “removal of sort conditions.” r
Example (left successor).  Suppose we would like to show the left-successor
property of addition, that is,

(Vinteger z,y) [(z+1)+y = (z+y) + 1] (left successor)

In the theory of the nonnegative integers, we begin with the goal

assertions goals

G1. (Vinteger z,y) [(:E +1)+y = (z+y)+1]

We have several options in applying skolemization and induction on z and y.

Following the informal proof (Section 8.2), we prefer to skolemize z first and then
to apply induction on y.

Abandoning the relativized-quantifier notation in (V integer z), we can ex-
press goal G1 as

if integer(x)

then (V integer y) [( b+ :]

Gl'. (Vr)¥ T
(z+y)+1

By application of the V-elimination rule, we may drop the outermost quan-
tifier of goal G1’, replacing the variable z with the skolem constant k, to obtain
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G2. if integer(k)
then (V integer y)[(k+ 1) +y = (k+y) + 1]

Henceforth we shall abandon the relativized-quantifier notation implicitly as pay

of the process of eliminating a relativized quantifier, without mentioning it a4 a
separate step.

By the uf-split rule, goal G2 may be decomposed into

A3. integer(k)

G4. (V integer y) [(k +1)+y=(k+y)+1]

By the stepwise induction rule applied to goal G4, we obtain

G5, |(k+1)+0| = (k+0)+1

and

[if integer(m)

then if (k+1)4+m = (k+m)+1
o (k+1)+(m+1) =

i (k+(m+1))+1

Here the first conjunct corresponds to the base case and the second to the
inductive step of an informal proof. We first establish the base case.

Base Case
Recall the right-zero axiom for addition,

if integer(x)
then [ r+0| = x]u

By the equality rule, applied to the axiom and goal G5, with {x « k + 1}, the
goal is transformed to

G6. | integer(k + 1)
and
k+1 = (k+0)+1
and

[ ... ]
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We do not write the last conjunct, the inductive step, because it plays no role in
this portion of the proof.

For this step, we spell out the details of how to remove the sort condition
integer(k + 1). Recall the successor generation axiom

if integer(z)

then | integer(z + 1)

By the resolution rule, applied to the axiom and goal G6, with {z — k}, we
obtain

(7. integer(k)
and
k+1 = (k+0)+1
and

[ ]

Recall the assertion A3

integer(k)

By the resolution rule, applied to assertion A3 and goal G7, we drop the remaining
sort condition, leaving

G8 k+1= |k+0|+1

and

[ ... ]

Subsequently, all such patterns of reasoning will be justified by the phrase “re-
moval of sort conditions.”

By the equality rule, applied once more to the right-zero axiom and goal G8,
with {z « k}, the goal is transformed further (removing a sort condition) to

Go. [k+1l=Fk+1]|

and

[ ]
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By the reflexivity of equality, the first conjunct of goal G9 may pgy
dropped altogether, leaving the goal 3

G10. if integer(m)
then if (k+1)+m = (k+m)+1
then (k+1)+(m+1) = (k+(m+1))+1

The remaining goal corresponds to the inductive step of an informal stepwise.
induction proof.

Inductive Step

By two applications of the if-split rule, we may break down goal G10 into

All. nteger(m)

(k+1)+m

A12. —
(k+m)+1

G13. [(k+1) +(m+1)

k+(m+1)| +1

Assertion A12 corresponds to the induction hypothesis and goal G13 to the de-
sired conclusion of the inductive step. Assertion A1l corresponds to the phrase
“Consider an arbitrary nonnegative integer m ... .”

Recall the right-successor axiom for addition,

if integer(x) and integer(y)
then [ z+@y+1)| = (I'i'y)'*'l]

By the equality rule, applied twice to the axiom and goal G13, first with the
most-general unifier {z «— k + 1, y «— m} and then with {z «— k, y «— m}, we
may transform the goal (removing sort conditions) into

—

Gl4. |(k+1)+m| +1

(k+m)+1)+1
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Applying the equality rule to the induction hypothesis (assertion A12) and
goal G14, we may transform the goal into

((k_-i-m)+1)+1

G15. =
(k+m)+1)+1

Finally, by the reflexivity of equality, we obtain the final goal

G16. true

]

The proof in the following example uses each of the previous two properties

as assertions. It shows that it may be necessary to prove some properties before
proving others.

Example (commutativity). Suppose we would like to show that addition is
commutative, i.e., that

(Vinteger =, y)[z+y = y+ 7] (commutativity)
It turns out to be convenient to first prove the slightly different property

(V integer x) [(V integer y)[zr+y=y+ a:]] (alternative)

The two properties are equivalent but not identical because of the way the rel-

ativized quantifier is defined (Section 6.9). The commutativity property is an
abbreviation of

if integer(xz) and integer J
v, 4) [th (@) ger(y)
enr+y=y+=zx

The alternative property, on the other hand, is an abbreviation of
if integer(x) ]

(V z) then (¥ ) [zf integer(y) }
thenz+y=y+=z

The latter will be easier to prove. Then we will be able to use it as an assertion
in a simple proof of the original commutativity property.
®  Proof of the Alternative Property

To prove the alternative property, we begin with the initial goal

assertions goals

Gl. (V integer x) [(V integer )z +y=y+ :c]]
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Again, we have some freedom in applying skolemization and induction oy z acl
y. In this proof, we prefer to skolemize z first and to apply induction on y la‘f

By application of the V-elimination rule, we may drop the quantifier (
goal G1, replacing the variable z with the skolem constant ¢, and then ap
if-split rule, to obtain

Va) off
Ply the -

A2. integer(f)

G3. (VY integer y) [If +y =y+ E]

Applying stepwise induction on y to goal G3, we obtain

J

G4. £4+0 =|0+¢
and

if integer(m)
then if £4+m = m+/{
then £+ (m+1) = (m+1)+¢

Base Case

In an earlier example, we proved the left-zero property for addition, which
we may therefore include in our tableau as an assertion,

if integer(x)
then [ O+z| = a:]

By the equality rule, applied to the property and goal G4, with {z « £}, removing
a sort condition, the goal is reduced to

N ﬂ
G5. [£+0 = ¢

and

if integer(m)
then if £+m = m+{
then £+ (m+1) = (m+1)+¢

Recall the right-zero axiom for addition,
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if integer(x)
then|{z+0 =z

By the resolution rule, applied to the axiom and goal G5, with {z « ¢}, removing
a sort condition, the first conjunct of the goal may now be dropped, leaving

G6. if integer(m)
then if £+ m = m+{
then £+ (m+1) = (m+1)+¢

We have thus disposed of the base case; it remains to complete the inductive
step.

Inductive Step

By two applications of the if-split rule, we may break down goal G6 into the
assertions

J A7. integer(m)

A8. [E+m = |m+/4 ]_

and the goal

e 2

G9. L+(m+1) = |[(m+1)+¢

Assertion A8 corresponds to the induction hypothesis, and goal G9 to the de-
sired conclusion, of the inductive step. Assertion A7 corresponds to the phrase
“Consider an arbitrary nonnegative integer m. ...”

8 Recall the left-successor property for addition (which we proved in the pre-

ceding example),

if integer(x) and integer(y)
then | (z+1)+y | = (:1:+y)+1]_

P ——]

By the equality rule, applied to the property and goal G9, with {z «— m, y « £},
removing sort conditions, we may transform the goal into

G10. £+ (m+1) = |m+£|+1
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By the equality rule (right-to-left), applied to the induction hypothesig (aa.
sertion A8) and goal G10, we may transform the goal into

Gll. |f+(m+1) = ((+m) +T|1

Recall the right-successor axiom for addition,

if integer(z) and integer(y)
then |z +(y+1) = (z+y)+1

By the resolution rule, applied to the axiom and goal G11, with {z « £, y « m},
removing sort conditions, we obtain the final goal

G12. true 1
d

We have remarked that the preceding proof of the alternative property used
both the left-zero and left-successor properties as assertions. Had we attempted
to prove the alternative property without having proved the other two properties
first, it would have been difficult to complete the proof.

Now that we have completed the proof of the alternative property
(V integer x) [(V integer Y)[r +y =y + :E]] ,
we may use it as an assertion in the proof of the original commutativity property
(¥ integer z, y)[z +y =y +z].
m Proof of the Commutativity Property

We begin with a tableau in which the (unabbreviated) alternative property
is given as an assertion

assertions goals

if integer(x)
then if integer(y)

then|z+y=y+=2z

and the initial goal is the commutativity property

G1. (V integer z, y)[z +y =y + ]
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By the V-elimination rule, we may drop the quantifiers of goal G1, and apply the
if-split and and-split rules, leaving

A2. integer(£)

A3. integer(m)

G4. |[L+m=m+¢

Here the bound variables z and y of the goal G1 have been replaced by the skolem
constants £ and m, respectively.

By the resolution rule, applied to the alternative property and the goal G4,
with {z « ¢, y < mJ}, removing sort conditions, we obtain the final goal

G5. true

This concludes the proof of the original commutativity property

(V integer z, y)[z +y =y + x]. P

In the above sequence, we had the foresight to prove the alternative property
before attempting to prove the original commutativity property. In practice, if in
the course of a proof we discover we need an instance of some other property, we
may interrupt the main proof and attempt to prove the required property as a
subsidiary proposition, or lemma, in a separate tableau. Once we have completed
the proof of the lemma, we can add it as an assertion in the tableau of the
interrupted main proof, and continue the main proof.

The proofs of some properties of the multiplication, exponentiation, and fac-
torial functions are requested in Problems 11.1, 11.2, and 11.3, respectively.
The fibonacci function is introduced in Problem 11.4. A relation that dis-

tinguishes between even and odd nonnegative integers is presented in Problem
11.5.

A-FORM OF INDUCTION RULE

The stepwise induction rule applies to goals. There is a dual assertion version
that applies to assertions.

Rule (stepwise induction, A-form)

For a closed sentence
(3 integer x)F|z],
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we have

assertions goals

(3 integer z)F|x]

F[0]
or
integer(m) and

(not F[m]) and
Flm +1]

where m is a new constant.

We seldom use this version. Roughly, it says that if F[z] is true for some
integer x, either it is true for 0 or there is some point at which it becomes true.
Its justification is requested in Problem 11.6.

We do not introduce a tableau form of the complete induction principle de-
scribed in Section 8.6. Complete induction will be seen to be a special case of
well-founded induction, which is discussed in the following two chapters.

11.2 TUPLES

In the same way that we introduced the stepwise induction rule over the nonneg-
ative integers as a new deduction rule, we can incorporate the stepwise induction
rules for other theories with induction, including tuples and trees. We consider
first the theory of tuples. In this theory, we shall use r, s, and t, with or without
subscripts, as additional constant symbols.

AXIOMS AND INDUCTION RULE

A tableau over the tuples is a tableau with equality with the generation
axioms

—

assertions goals

tuple(( )) (empty)

if atom(u) and tuple(x)
then tuple(u o x) (insertion)
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and the uniqueness axioms

if atom(u) and tuple(z)
then not (uozx = ()) (empty)

if atom(u) and atom(v) and
tuple(r) and tuple(y)
then if uor=voy (insertion)
then u=v and T=Yy

The axioms that define any new constructs (e.g., append of tuples) are also
included as assertions. As usual, any previously proved properties may be incor-
porated as assertions.

Because the tableau is with equality, we also include the reflerivity axiom
(z = z) among our assertions, and we may use the equality rule in conducting
any proof.

In addition, we include in a tableau over the tuples a new deduction rule for
stepwise induction. The stepwise induction rule for tuples allows us to establish
a goal of form (V tuple z)F[z] by proving the conjunction of a base case and an
inductive step.

Rule (stepwise induction)
For a closed sentence

(V tuple =)F|z],

we have

assertions goals

(V tuple =) F|x)

FIO!

and

on

if atom(a) and tuple(r)
then if Flr]
then Fla < 7]

where a and r are new constants. 3

Here the conjunct

FION
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corresponds to the base case, and the conjunct
if atom(a) and tuple(r)
then if Flr]
then Flaor]

corresponds to the inductive step of an informal induction proof. Note t

in the theory of the nonnegative integers, we are permitted to apply the stepwige
induction rule only if the goal is a closed sentence. :

hat, as

The justification for the rule is analogous to that for the ste

pwise induczmn
rule over the nonnegative integers (Problem 11.7(a)). The reader is requested tq

formulate and justify an A-form of this rule, which applies to assertions (Problem :
11.7(b)).

EXAMPLE

In the following example, we illustrate the proof of a property in the theory of

tuples. Again, the reader can observe the close similarity between this proof ang
the corresponding informal proof in Section 9.3.

The example illustrates some of the strategic aspects of the use of the in.
duction principle: the treatment of generalization in a tableau setting and the
importance of the order in which skolemization and induction are applied.

Example (alternative reverse).  The reverse function, which reverses the
elements in a tuple, is defined by the following two axioms:

reverse({ )) = () (empty)
0 ) = reiofl] (e

The append function ¢, used in the insertion axiom for reverse, is defined
by the following two axioms:

(V tuple y) [( YOy = y] (left empty)
(v .(tzpc;?;n ;3 [(“ °z) Oy = uo(z o y)} (left insertion)

From these axioms, let us assume that we have previously proved within the
deductive-tableau system the following properties of append:
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((‘v‘;‘;f;r;; Z% [(u) Oy = uo y] (singleton)
(Vtuple z)[z O () = x| (right empty)
(V tuple z, y, 2)[(z0y) 0z = 20 (YO z)] (associativity)

Therefore we are permitted to include these properties as assertions in subsequent
initial tableaux.

Suppose we define a function rev2(z, y), which reverses the tuple = and
appends the result with the tuple y, by the following two axioms:

(V tuple y)[rev2(( ), ¥) = ¥ (eft empty)
E: :ti;?; ;’*) ) [re'u2(u<>:l:, y) = rev2(z, uo y)] (left insertion)

The property we would like to show in this example is that the function rev2
gives us an alternative definition of the reverse function, that is,

(Y tuple x)[reverse(z) = rev2(x, ( )] (special)
We must first prove the more general property

(V tuple z, y)[rev2(z, y) = reverse(z) oyl (general)

Then we will be able to use the general property as an assertion in the proof of
the desired special property.

®  Proof of the General Property |

To prove the general property, we begin with the goal

assertions goals

Gl. (Vtuple z,y) [rev?(a:, y) = reverse(z) O y)

As in the informal proof (Section 9.3) we have a choice among applying skolem-
ization and induction on z and y. In this case we prefer to apply induction on
z first, eliminating the quantifier for y later. This order is essential, as we shall
explain afterwards.

By the stepwise induction rule applied to goal G1, it suffices to prove the
conjunction of a base case and an inductive step,
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G2.

(V tuple y)¥ [re'u2(( Y v)

reverse({ )) O y|
and

[if atom(a) and tuple(r)

/
then if (Vtuple ') reva(r, v')
reverse(r) O v’

2a o " —
then (V tuple y'') rev2(aor, y")
reverse(a o) O y”

o Y

The quantified variable y was renamed to clarify the exposition in the following

steps.

leaving

By the V-elimination rule, we may drop the (V tuple y) quantifier of goal G2,

G3.

[if tuple(t)
bthen ren2({ ), 1)

reverse({ ))

ot

and
[if atom(a) and tuple(r)

rev2(r, y') =

. /
then if (Y tuple y') [reveTSE(T) oy

rev2(a o, y'")
reverse(a o) O y”

then (V tuple y") [

Note that the bound variable y of goal G2 has been replaced in goal G3 by the

skolem constant t.

Base Case

Recall the left-empty axiom for rev2 and the empty axiom for reverse,

if tuple(y)
then [ rev2({ ), y)

—_—

reverse(( ))

By the equality rule, applied twice in succession to the two axioms and goal G3,

with {y « t}, we obtain
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G4. | tuple(t)

and

if | tuple(t)

then t

and

[

= ()ot

]

We do not write the last conjunct because it plays no part in this pbrtion of the

proof.

The next step illustrates a different way to remove sort conditions, in which
we apply the resolution rule to an earlier goal rather than an assertion, so we
spell out the details here. By the resolution rule applied to our earlier goal G3,

if | tuple(t)
then rev2(( ), t) =

and

[ ]

reverse({ }) O t

and to goal G4, we may reduce the goal to

G5. t= |{)ot

Recall the left-empty axiom for append,

if tuple(y) )
then [ (You| = y]

By the equality rule, applied to the axiom and goal G5,
reduce the base case of G5 further, to

with {y «— t}, we may

G6. |t =t
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(The sort condition tuple(t) was again removed by applying the resolution
to the earlier goal G3.)

By the reflexivity of equality, we may now drop the first conjunct of goal
leaving only the last conjunct, the inductive step

GT7. if atom(a) and tuple(r) e

rev2(r, y') :}

th f (V tuple o'
en if (¥ tuple y') {reverse(r)oy'

2 " =
then (V tuple y") [rev o0y ") }

reverse(a ¢ 1) O y"”

—d

Inductive Step

By two applications of the if-split rule, and one application of the and-splj
rule, we have

A8. atom(a)

A9. tuple(r)

rev2(r, y') =
A10. (V tuple y')?
(v tuple y') reverse(r) Oy’

and

rev2(aor, y"') =
reverse(aor) Oy”

G11. (V tuple y")¥ [

By the V- and 3-elimination rules, we may drop the remaining quantiﬁer§ of
assertion A10 and goal G11, and then apply the if-split rule to the goal, leaving

A12. if tuple(y’)
then rev2(r, y') =

reverse(r) & Y’

A13. tuple(s)

Gl4. |rev2(a o, 8)| =

reverse(a © 1) O S
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Note that the bound variable 3" of goal G11 was replaced by the skolem constant s
in goal G14. Here assertion A12 corresponds to the induction hypothesis, and goal
G14 to the desired conclusion of the inductive step.

Recall the left-insertion axiom for rev2,

if atom(u) and tuple(z) and tuple(y)

rev2(uozx, y) | =

then
rev2(z, u oY)

By the equality rule, applied to the axiom and goal G14, with {u — a,z « 1,
y — s}, and removal of sort conditions, we obtain

G15. rev2(r,a¢s) =

reverse(aor) | O

Recall the insertion axiom for reverse,

if atom(u) and tuple(x)

reverse(u o) | =

then
reverse(z) & (u)

By the equality rule, applied to the axiom and goal G15, with {u — a, £ «— r},
and removal of sort conditions, we obtain

of G16. rev2(r,a¢s) =
n
. (reverse(r) © (a)) © s

Recall the associativity property of append,

if tuple(z) and tuple(y) and tuple(z)

then [ (zoy)oz| = IO(yoz)]d

By the equality rule, applied to the property and goal G16, with {z « reverse(r),
y «— (a), z «— s}, and removal of sort conditions, we obtain
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G17. rev2(r,ao0s) =
reverse(r) & (a) & s

Recall the singleton property of append,

if atom(u) and tuple(y)
then [ (w)oy| = uOy]

By the equality rule, applied to the axiom and goal G17, with {u « a, y «— s},
and removal of sort conditions, we obtain

rev2(r, aos) =

G, reverse(r) & (a ¢ s)

Recall our induction hypothesis (assertion A12),

if tuple(y’)
rev2(r, y') =
reverse(r) Oy’

then

By the resolution rule, applied to the inductio

n hypothesis and goal G18, with
{¥' a0 s}, we obtain the final goal

G19. true

Now that we have completed the proof of the general property of rev2,

(V tuple z, y)[rev2(z, y) = reverse(z) Oy,

we may use it as an assertion in the proof of the special property of rev2,

(V tuple z)[reverse(z) = rev2(z, ())].

m  Proof of the Special Property

We begin with the tableau in which the

general property of rev? is given as
an assertion
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assertions goals

if tuple(x) and tuple(y)

then [ rev2(z, y) | = reverse(:c)()y]

and the initial goal is the special property

G1. (V tuple x)¥ [

reverse(z) =
rev2(z, ())

|

By the V-elimination rule, we may drop the quantifier of goal G1 and apply

the if-split rule, leaving

A2. tuple(s)

G3. reverse(s) =

rev2(s, ())

Here the bound variable z of the goal G1 has been replaced by the skolem con-

stant s.

By the equality rule, applied to the general property of rev2 and goal G3,
with {z « s, y < ( )}, and removal of sort conditions, we obtain

G4. reverse(s) =

reverse(s) O ()

Recall the right-empty property of append,

if tuple(z)

then [ z2o() ] = m]—

By the equality rule, applied to the property and goal G4, with {z «— reverse(s)},

and removal of sort conditions, we obtain

G5. | reverse(s) =

reverse(s)

By the reflexivity of equality, we obtain the final goal
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G6. true :J

This concludes the proof of the desired special property
(V tuple z)[reverse(z) = rev2(z,())]- r

Note that, in the proof of the general property, we did not apply the VY.
elimination rule to remove the second quantifier (V tuple y) in goal G1 until after
we had applied the induction principle. This was crucial: had we removed this
quantifier too early, the proof would not have succeeded. As it turned out, the
induction hypothesis, assertion A12, contained the variable y’. The variable 3 was
then replaced by the term a ¢ s in resolution with goal G18. Had we removed the
quantifier first, the induction hypothesis would have contained a skolem constant
instead of the variable 3, and this step would have been impossible.

In this example, we mentioned all the properties used in the proof at the
beginning. Henceforth, we shall usually not mention such properties until they
are used. We shall assume, nevertheless, that they are present in the initial
tableau.

Remark (associativity and commutativity). In the example, we obtained
goal G17 by applying the equality rule to the associativity property of append
and goal G16. Henceforth we shall not include associativity properties explicitly
as assertions in our tableaux; rather, we shall say that the new row has been
obtained “by associativity” of the operator in question. For instance, we shall say
that goal G17 has been obtained from goal G15 by application of the equality rule
and “the associativity of append,” without mentioning the intermediate goal G16
at all.

Similarly, when we use the commutativity property of an operator, we shall
omit the property and say that the new row has been obtained “by commutativ-

ity” of the operator in question. r

Proofs of some properties of the append function are requested in Problem
11.8. Another property of tuples, that the reverse function “distributes” over
the append function ¢, is proposed in Problem 11.9. A property of a relation
over tuples is set forth in Problem 11.10.
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11.3 TREES

A tableau over the trees is a tableau with equality with the generation axioms

assertions goals

if atom(x)
then tree(x) (atom)

if tree(z) and tree(y)
then tree(z o y) (construction)

and the uniqueness axioms

if tree(x) and tree(y)
then not (atom(z e y)) (atom)

if tree(z,) and tree(z2) and
tree(y,) and tree(yz)

then if 10X =1Y;® Y2 (construction)
then 1 =y; and To = Y2

In this theory, we shall use r, s, and t, with or without subscripts, as additional
constant symbols.

Because the tableau is with equality, we also include the reflezivity axiom

(z = z) among our assertions, and we may use the equality rule in conducting
A any proof.

In addition, we include in a tableau over the trees a new deduction rule for
stepwise induction. The stepwise induction rule for trees allows us to establish

a goal of form (V tree z)F|[z] by proving the conjunction of a base case and an
inductive step.

Rule (stepwise induction)

For a closed sentence
(V tree z)F[z],

we have
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assertions goals
o —
(V tree z)F|zx]
__.__—‘—'_—_-—_.____‘-

if atom(a) then Fla]
and
if tree(r1) and tree(rs)
then if Flri] and Flre]
then Flry e rq]

where a, 71, and 75 are new constants.

Here the conjunct
if atom(a) then Fla]
corresponds to the base case, and the conjunct

if tree(ry) and tree(rs)
then if Flri] and Flry)
then Flry e ry]

corresponds to the inductive step of an informal induction proof. Note that, as

in the other theories, we are permitted to apply the stepwise induction rule only
if the goal is a closed sentence.

In Problem 11.11, the reader is asked to conduct a proof in a combined
theory of nonnegative integers, tuples, and trees.

PROBLEMS

Proofs for the problems in this chapter should use the deductive-tableau
technique. You may remove sort conditions without spelling out the details.

Many of the problems request tableau proofs of properties that appear in
earlier chapters. For these proofs, you may not use properties that appear after
the requested property in the earlier chapter. For example, Problem 11.1(c)
requests a tableau proof of the left-successor property of multiplication, which
appears in Chapter 8. In this proof, you may use the right-successor axiom for
multiplication, which appears before the requested property, but not the left-
distributivity property of multiplication, which appears afterwards.
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Problem 11.1 (multiplication) page 551

Prove the following properties of multiplication in the theory of the nonneg-
ative integers:

(a) Right one
(Vinteger z)[z-1 = ]

Hint: Recall that 1 is a notation for (0 + 1).
(b) Left zero
(Vinteger z)[0-z = 0]
(c) Left successor

(V integer x, y)[(:c+ 1)-y = :z:-y+’y]

(d) Right distributivity
(Y integer z, y, z)[:r (y+2) = z-y+z-2].
Problem 11.2 (exponentiation) page 551

Prove, in the theory of the nonnegative integers, that the function ezp3
provides an alternative definition for the exponentiation function z¥, in the sense
that |

(V integer x, y) [:t:y = ezpl(z, v, 1)]
Hint: In a separate tableau, first prove a more general property. See the informal
proof in Section 8.3.
Problem 11.3 (factorial) page 551

Prove, in the theory of the nonnegative integers, that the function fact2 does
indeed provide an alternative definition for the factorial function z!, in the sense
that

(V integer z)[z! = fact2(z, 1)]

Hint. Prove a more general property.

Problem 11.4 (fibonacci function) page 551
Suppose the fibonacci function fib(x) is defined by the following axioms:

fib(0) = 0 (zero)

fib(1) = 1 (one)

(V integer x) [ﬁb (z+1)+1) = fib(z+1)+ ﬁb(a:)] (plus two)
The sequence of successive values fib(0), fib(1), fib(2), ..., that is, 0, 1, 1, 2, 3,

9, 8, ... is known as the fibonacc: sequence.
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Suppose the function fib3(z, y, z) is defined by the following axioms:
(¥ integer y, 2)[ib3(0, ¥, 2) = v] (sero)
(¥ integer x, y, 2)[fib3(z + 1, y, 2) = fib3(z, 2, y + 2)]
(successw)

(a) Prove, in the theory of the nonnegative integers, that
(V integer , y, 2) [ﬁb3($ +1,y,2) = y-fib(z) + z- fibz + 1)1

(b) Prove, in the theory of the nonnegative integers, that the function fib3 Dro-
vides an alternative definition for the fibonacci function, in the sense that

(V integer z)[fib(z) = fib3(z, 0, 1)].

Problem 11.5 (even) page 551

In the theory of the nonnegative integers, suppose the relation even(z) is
defined by the axioms

even(0) (zero)

not even(1) (one)

(V integer z)[even((z +1) +1) = even(z)) (plus two)
Prove that

(V integer x)[even(z) or even(z + 1)].

Problem 11.6 (A-form) page 552

Justify the A-form of the stepwise induction rule for the nonnegative integers.

Problem 11.7 (tuples) page 554
(a) Justify the stepwise induction rule for tuples.

(b) Formulate and justify an A-form of the stepwise induction rule for tuples.

Problem 11.8 (append) page 562

In the theory of tuples, prove the following properties of the append function:
(a) Right empty
(V tuple 2)[z 0 () = z]
(b) Associativity
(v tuple 7, y, 2)[(c0y) 0 = 20 (yo2).




ROBLEMS 567

problem 11.9 (reverse) page 562

In the theory of tuples, prove that the reverse function distributes over the
append function ¢, that is,

(V tuple z, y) [reverse(z O y) = reverse(y) ¢ reverse()| (append)
Hint: Use the results of Problem 11.8.

problem 11.10 (initial subtuple) page 562

In the theory of tuples, show that the initial-subtuple relation z <,,;; v does
; indeed hold if and only if z is an initial subtuple of y, that is, the sentence

T Sinat Y
(V tuple z, y) = (append)
(3 tuple 2)[x 0z = y]
is valid.

{ Hint: Prove each direction separately.

Problem 11.11 (length of flattree) page 564

Consider a combined theory of the nonnegative integers, tuples, and trees. In

this theory, suppose that the function tips(z), which counts the number of leaves
in a tree z, is defined as in Problem 10.5. Prove that

(V tree w)[length(flattree(a:)) = tips(z)].




